Knowledge Agora



Similar Articles

Title Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste
ID_Doc 18825
Authors Zaharieva, R; Evlogiev, D; Kerenchev, N; Stanimirova, T
Title Modification of Quaternary Clays Using Recycled Fines from Construction and Demolition Waste
Year 2022
Published Processes, 10.0, 6
Abstract Foundation of buildings in soft soil such as quaternary clay is often associated with difficult compaction, settlement, non-uniform and/or excessive deformation, and unsatisfactory shear resistance. The present study aims to assess the possibility of using recycled fines from construction and demolition waste, such as mechanically treated gypsum and waste concrete powder (WCP), instead of ordinary binders or industrial waste, in the stabilization of quaternary clay. A detailed characterization of soil components is presented. Seven mixes with various proportions of gypsum and WCP are prepared. Main geotechnical parameters of the modified soil are studied by applying standardized methods with a few deviations. XRD analysis and pH measurements are performed. It was found that the effect of 5% to 20% recycled di-hydrate gypsum is limited to improvement in moist soil compatibility. A gypsum content of 10% positively impacts soil cohesion and the oedometer modulus. WCP is an active component, containing non-hydrated cement, portlandite, calcite and calcium silicates hydrate. As a result, by adding 5% of WCP only, significant improvement can be achieved: greater soil cohesion, reduced deformability and higher UCS. When 5% of recycled gypsum is also added, soil cohesion is further improved because of ettringite formation.
PDF https://www.mdpi.com/2227-9717/10/6/1062/pdf?version=1653544768

Similar Articles

ID Score Article
13804 Islam, S; Islam, J; Hoque, NMR Improvement of consolidation properties of clay soil using fine-grained construction and demolition waste(2022)Heliyon, 8, 10
8922 Yaghoubi, M; Arulrajah, A; Horpibulsuk, S Engineering Behaviour of a Geopolymer-stabilised High-water Content Soft Clay(2022)International Journal Of Geosynthetics And Ground Engineering, 8.0, 3
13850 Volpintesta, F; Finocchiaro, C; Barone, G; Mazzoleni, P; Paris, E Compositional Differences in Construction and Demolition Wastes (CDWs) for Geopolymer Mortars: A Comparative Study Using Different Precursors and Alkaline Reagents(2024)Minerals, 14, 4
9403 Asensio, E; Medina, C; Frías, M; de Rojas, MIS Fired clay -based construction and demolition waste as pozzolanic addition in cements. Design of new eco-ef ficient cements(2020)
22185 del Río, M; Santos, R; González, M; Cruz, JS; García, J; Sáez, PV Preliminary Study of the Mechanical Behavior of Gypsum Plastering Mortars with Ceramic Waste Additions(2022)Journal Of Materials In Civil Engineering, 34.0, 3
26952 Pawluczuk, E; Kalinowska-Wichrowska, K; Soomro, M Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand(2021)Materials, 14, 16
6276 Juan-Valdés, A; Rodríguez-Robles, D; García-González, J; Gómez, MISD; Guerra-Romero, MI; De Belie, N; Morán-del Pozo, JM Mechanical and microstructural properties of recycled concretes mixed with ceramic recycled cement and secondary recycled aggregates. A viable option for future concrete(2021)
Scroll