Knowledge Agora



Similar Articles

Title Biochar from Waste Derived Fuels as Low-Cost Adsorbent for Waste Hydrocarbons
ID_Doc 19086
Authors Porsnovs, D; Ansone-Bertina, L; Kviesis, J; Arina, D; Klavins, M
Title Biochar from Waste Derived Fuels as Low-Cost Adsorbent for Waste Hydrocarbons
Year 2020
Published Environmental And Climate Technologies, 24.0, 3
Abstract The aim of this study is to prove technical feasibility of combined refuse derived fuel (RDF) torrefaction and oily wastewater treatment approach by using RDF derived biochar as a sorption media. Biochars prepared from refuse derived fuels in torrefaction, carbonization and pyrolysis modes were analysed as fuels and as hydrocarbon sorbents. Changes of elemental composition and properties of material during thermal treatment and subsequent washing process have been analysed. Experimental evaluation of sorption behaviour of toluene and diesel fuel on obtained biochar performed. Our results show that torrefaction/carbonization of RDF coupled with the subsequent washing of biochar is a method allowing to overcome absolute majority of the quality problems of waste derived fuels, including the most important one: high chlorine content. In spite the fact that optimal temperatures for upgrading waste derived fuels and to produce high quality sorbent does not coincide, technically it is possible to combine the washing of torrefied/carbonized waste derived fuels with the treatment of wastewaters that are polluted with oils or hydrocarbons.
PDF https://www.sciendo.com/pdf/10.2478/rtuect-2020-0095

Similar Articles

ID Score Article
21772 Présiga-López, D; Rubio-Clemente, A; Pérez, JF Use of biochar as an alternative material for the treatment of polluted wastewater(2021)Uis Ingenierias, 20.0, 1
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
10366 Racek, J; Chorazy, T; Miino, MC; Vrsanská, M; Brtnicky, M; Mravcová, L; Kucerík, J; Hlavínek, P Biochar production from the pyrolysis of food waste: Characterization and implications for its use(2024)
5122 Marzeddu, S; Décima, MA; Camilli, L; Bracciale, MP; Genova, V; Paglia, L; Marra, F; Damizia, M; Stoller, M; Chiavola, A; Boni, MR Physical-Chemical Characterization of Different Carbon-Based Sorbents for Environmental Applications(2022)Materials, 15.0, 20
21118 Viotti, P; Marzeddu, S; Antonucci, A; Decima, MA; Lovascio, P; Tatti, F; Boni, MR Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review(2024)Materials, 17.0, 4
27560 Wystalska, K; Kwarciak-Kozlowska, A The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties(2021)Materials, 14.0, 7
18388 Ischia, G; Fiori, L; Gao, LH; Goldfarb, JL Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production(2021)
14799 Medeiros, DCCD; Chelme-Ayala, P; El-Din, MG Sludge-based activated biochar for adsorption treatment of real oil sands process water: Selectivity of naphthenic acids, reusability of spent biochar, leaching potential, and acute toxicity removal(2023)
2664 Costa, JAV; Zaparoli, M; Cassuriaga, APA; Cardias, BB; Vaz, BD; de Morais, MG; Moreira, JB Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy(2023)
Scroll