Knowledge Agora



Similar Articles

Title Demonstration of ultra-high-water recovery and brine concentration in a prototype evaporation unit: Towards zero liquid discharge desalination
ID_Doc 19227
Authors Scelfo, G; Trezzi, A; Vassallo, F; Cipollina, A; Landi, V; Xenogianni, C; Tamburini, A; Xevgenos, D; Micale, G
Title Demonstration of ultra-high-water recovery and brine concentration in a prototype evaporation unit: Towards zero liquid discharge desalination
Year 2025
Published
Abstract The availability of water is still one of the most important factors affecting the sustainable growth of a country. Although many countries have free access to an inexhaustible source of water, the sea, this source cannot be used for human purposes as it is. To face this problem, desalination has been proposed for freshwater production but the generation of a waste brine effluent poses some issues of actual sustainability. In this work, the operation results of a Multiple Effect Distillation (MED) demo plant, designed for stable operation at high brine concentrations and operated as a brine concentrator, are presented. To this purpose, the integration with NanoFiltration (NF) has been implemented to minimize scaling risks, by removing bivalent ions from the feed stream. The 2-effects MED pilot unit, with a capacity of 1.7 m3/h, 3 /h, has been installed as part of the treatment chain of the WATER- MINING project, within the premises of the power station of the island of Lampedusa (Sicily, Italy) and is fully powered by waste heat at 70-80 degrees C from diesel engines. A vapor temperature of 40-50 degrees C allowed a perfect coupling with the low temperature waste heat source, demonstrating the possibility to produce distilled water with a conductivity between 15 and 25 mu s/cm. Among the several operating conditions investigated, a recovery ratio above 80 % has been achieved and an effluent brine conductivity of 240 mS/cm was produced, very close to saturation in NaCl, thus being excellent for food-grade sea salt production in evaporative ponds. For the first time, it has been demonstrated on a pilot scale how a MED unit, supplied with waste heat, can be used efficiently as a brine concentrator, obtaining a brine concentration 8 times higher than the input concentration without any scaling problem.
PDF https://doi.org/10.1016/j.seppur.2024.129427

Similar Articles

ID Score Article
22843 Morgante, C; Vassallo, F; Cassaro, C; Virruso, G; Diamantidou, D; Van Linden, N; Trezzi, A; Xenogianni, C; Ktori, R; Rodriguez, M; Scelfo, G; Randazzo, S; Tamburini, A; Cipollina, A; Micale, G; Xevgenos, D Pioneering minimum liquid discharge desalination: A pilot study in Lampedusa Island(2024)
26702 Bonnail, E; Vera, S; Delvalls, TA; Lee, DS A New Disruptive Technology for Zero-Brine Discharge: Towards a Paradigm Shift(2023)Applied Sciences-Basel, 13, 24
6372 Cipolletta, G; Lancioni, N; Akyol, Ç; Eusebi, AL; Fatone, F Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment(2021)
10372 Panagopoulos, A; Giannika, V Comparative techno-economic and environmental analysis of minimal liquid discharge (MLD) and zero liquid discharge (ZLD) desalination systems for seawater brine treatment and valorization(2022)
22371 Morgante, C; Vassallo, F; Xevgenos, D; Cipollina, A; Micari, M; Tamburini, A; Micale, G Valorisation of SWRO brines in a remote island through a circular approach: Techno-economic analysis and perspectives(2022)
14174 Tufa, RA; Noviello, Y; Di Profio, G; Macedonio, F; Ali, A; Drioli, E; Fontananova, E; Bouzek, K; Curcio, E Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination(2019)
7094 Thiel, GP; Kumar, A; Gómez-González, A; Lienhard, VJH Utilization of Desalination Brine for Sodium Hydroxide Production: Technologies, Engineering Principles, Recovery Limits, and Future Directions(2017)Acs Sustainable Chemistry & Engineering, 5, 12
17079 Herrero-Gonzalez, M; Ibañez, R Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process(2022)Membranes, 12, 9
25469 Ugarte, P; Renda, S; Cano, M; Pérez, J; Peña, JA; Menéndez, M Air-Gap Membrane Distillation of Industrial Brine: Effect of Brine Concentration and Temperature(2024)Industrial & Engineering Chemistry Research, 63, 3
18104 Politano, A; Al-Juboori, RA; Alnajdi, S; Alsaati, A; Athanassiou, A; Bar-Sadan, M; Beni, AN; Campi, D; Cupolillo, A; D'Olimpio, G; D'Andrea, G; Estay, H; Fragouli, D; Gurreri, L; Ghaffour, N; Gilron, J; Hilal, N; Occhiuzzi, J; Carvajal, MR; Ronen, A; Santoro, S; Tedesco, M; Tufa, RA; Ulbricht, M; Warsinger, DM; Xevgenos, D; Zaragoza, G; Zhang, YW; Zhou, M; Curcio, E 2024 roadmap on membrane desalination technology at the water-energy nexus(2024)Journal Of Physics-Energy, 6, 2
Scroll