Knowledge Agora



Similar Articles

Title An Overview of the Potential for Municipal Wastewater Treatment Plants to Be Integrated into Urban Biorefineries for the Production of Sustainable Bio-Based Fuels and Other Chemicals
ID_Doc 19430
Authors Shrestha, B; Foret, B; Sharp, W; Gang, D; Hernandez, R; Revellame, E; Fortela, DLB; Holmes, WE; Zappi, ME
Title An Overview of the Potential for Municipal Wastewater Treatment Plants to Be Integrated into Urban Biorefineries for the Production of Sustainable Bio-Based Fuels and Other Chemicals
Year 2024
Published Current Pollution Reports, 10.0, 3
Abstract Purpose of ReviewAn increase in the generation of waste within cities is unavoidable due to the increasing global population growth, particularly in urban areas. Municipal wastewater treatment plants (WWTPs) in these urban areas are being pushed to their design limits resulting in issues with WWTP residual management. This paper reviews potential applications of transitioning a municipal WWTP into an urban biorefinery for converting wastes into various value-added chemicals and energy.Recent FindingsPrimary WWTP-based residuals produced are waste-activated sludge, biosolids, grit, and effluent. These components are becoming viable feedstocks for producing many potential products and can be recovered for commercial purposes as opposed to simple disposal. Example products include chemicals, energy, and transportable biofuels. An advantage to biorefinery operations composed of WWTPs is that they provide greener solutions while posing little to no threat to the environment. There has also been an increasing interest in co-feedstocks to WWTPs, such as municipal solids, food wastes, agriculture wastes, and lignocellulosic biomass, which can enhance product yields while providing sustainable management solutions to these additional waste streams.SummaryMunicipal wastewater influents generated within the USA have a chemical energy potential of 1.3 MJ/person/day which represents about 4% of the total daily electricity consumed globally. The cost of waste management is expected to rise by 5.5% by 2027 which can be significantly lowered by having WWTPs integrated into biorefineries. This review found that there is great potential for converting WWTPs into true biorefineries that can effectively produce numerous value-added chemicals. Often, minor process changes can be applied which will yield the envisoned products. This paper provides the framework towards both commercialization opportunities and needed research.
PDF

Similar Articles

ID Score Article
27610 Guven, H; Ersahin, ME; Ozgun, H; Ozturk, I; Koyuncu, I Energy and material refineries of future: Wastewater treatment plants(2023)
19776 Varjani, S; Shahbeig, H; Popat, K; Patel, Z; Vyas, S; Shah, AV; Barceló, D; Ngo, HH; Sonne, C; Lam, SS; Aghbashlo, M; Tabatabaei, M Sustainable management of municipal solid waste through waste-to-energy technologies(2022)
8959 Ram, C; Kumar, A; Rani, P Municipal Solid Waste Management: A Review of Waste to Energy (WtE) Approaches(2021)Bioresources, 16.0, 2
15379 Kehrein, P; van Loosdrecht, M; Osseweijer, P; Posada, J Exploring resource recovery potentials for the aerobic granular sludge process by mass and energy balances - energy, biopolymer and phosphorous recovery from municipal wastewater(2020)Environmental Science-Water Research & Technology, 6, 8
20088 Yadav, G; Mishra, A; Ghosh, P; Sindhu, R; Vinayak, V; Pugazhendhi, A Technical, economic and environmental feasibility of resource recovery technologies from wastewater(2021)
29775 Akyol, Ç; Foglia, A; Ozbayram, EG; Frison, N; Katsou, E; Eusebi, AL; Fatone, F Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept(2020)Critical Reviews In Environmental Science And Technology, 50.0, 9
20941 Tsui, TH; Wong, JWC A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management(2019)Waste Disposal & Sustainable Energy, 1, 3
21489 Dutta, D; Arya, S; Kumar, S Industrial wastewater treatment: Current trends, bottlenecks, and best practices(2021)
21598 Li, Y; Meenatchisundaram, K; Rajendran, K; Gohil, N; Kumar, V; Singh, V; Solanki, MK; Harirchi, S; Zhang, ZQ; Sindhu, R; Taherzadeh, MJ; Awasthi, MK Sustainable Conversion of Biowaste to Energy to Tackle the Emerging Pollutants: A Review(2023)Current Pollution Reports, 9.0, 4
17841 Ersahin, ME; Güven, ÜH; Öztürk, I From Wastewater Treatment Plant To Wastewater Refinery(2022)
Scroll