Knowledge Agora



Similar Articles

Title Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes
ID_Doc 19513
Authors Román-Ramírez, LA; McKeown, P; Jones, MD; Wood, J
Title Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes
Year 2020
Published Acs Omega, 5.0, 10
Abstract The kinetics of the transesterification of polylactic acid (PLA) with methanol to form methyl lactate catalyzed by Zn(II) complexes was studied experimentally and numerically. The complexes, Zn(1(Et)), and Zn(2(Pr))(2), were synthesized from ethylenediamine and propylenediamine Schiff bases, respectively. The temperature range covered was 313.2-383.2 K. An increase in the reaction rate with the increase in temperature was observed for the Zn(1(Et))(2)-catalyzed reaction. The temperature relationship of the rate coefficients can be explained by a linear Arrhenius dependency with constant activation energy. The kinetics of Zn(2(Pr))(2), on the other hand, is only explained by non-Arrhenius kinetics with convex variable activation energy, resulting in faster methyl lactate production rates at 323.2 and 343.2 K. The formation of a new catalyst species, likely through reaction with protic reagents, appears to promote the formation of intermediate complexes, resulting in the nonlinear behavior. Stirring speed induced the stability of the intermediate complexes. Contrary to Zn(1(Et))(2), Zn(2(Pr))(2 )was susceptible to the presence of air/moisture in solution. The kinetic parameters were obtained by fitting the experimental data to the mass and energy balance of a consecutive second step reversible reaction taking place in a jacketed stirred batch reactor. For the case of Zn(2(Pr))2, the activation energy was fitted to a four-parameter equation. The kinetic parameters presented in this work are valuable for the design of processes involving the chemical recycling of PLA into green solvents.
PDF https://pubs.acs.org/doi/pdf/10.1021/acsomega.0c00291

Similar Articles

ID Score Article
6237 Lamberti, FM; Roman-Ramírez, LA; Dove, AP; Wood, J Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production(2022)Polymers, 14, 9
20102 McKeown, P; Román-Ramírez, LA; Bates, S; Wood, J; Jones, MD Zinc Complexes for PLA Formation and Chemical Recycling: Towards a Circular Economy(2019)Chemsuschem, 12, 24
19931 Payne, JM; Kociok-Köhn, G; Emanuelsson, EAC; Jones, MD Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters(2021)Macromolecules, 54.0, 18
14001 D'Alterio, MC; D'Auria, I; Gaeta, L; Tedesco, C; Brenna, S; Pellecchia, C Are Well Performing Catalysts for the Ring Opening Polymerization of L-Lactide under Mild Laboratory Conditions Suitable for the Industrial Process? The Case of New Highly Active Zn(II) Catalysts(2022)Macromolecules, 55, 12
7999 Santulli, F; Pappalardo, D; Lamberti, M; Amendola, A; Barba, C; Sessa, A; Tepedino, G; Mazzeo, M Simple and Efficient Zinc Catalysts for Synthesis and Chemical Degradation of Polyesters(2023)Acs Sustainable Chemistry & Engineering, 11, 43
18628 Liu, S; Hu, L; Liu, JY; Zhang, ZS; Suo, HY; Qin, YS Zinc Catalyst for Chemical Upcycling of PLA Wastes: Novel Industrial Monomer Resource toward Poly(ester-amide)(2024)Macromolecules, 57.0, 10
19032 Lamberti, FM; Ingram, A; Wood, J Synergistic Dual Catalytic System and Kinetics for the Alcoholysis of Poly(Lactic Acid)(2021)Processes, 9.0, 6
9077 Roman-Ramírez, LA; Powders, M; McKeown, P; Jones, MD; Wood, J Ethyl Lactate Production from the Catalytic Depolymerisation of Post-consumer Poly(lactic acid)(2020)Journal Of Polymers And The Environment, 28.0, 11
21053 Becker, T; Hermann, A; Saritas, N; Hoffmann, A; Herres-Pawlis, S Open- and Closed-Loop Recycling: Highly Active Zinc Bisguanidine Polymerization Catalyst for the Depolymerization of Polyesters(2024)
Scroll