Knowledge Agora



Similar Articles

Title Sustainable ethylene production: Recovery from plastic waste via thermochemical processes
ID_Doc 19720
Authors Kim, SW; Kim, YT; Tsang, YF; Lee, JC
Title Sustainable ethylene production: Recovery from plastic waste via thermochemical processes
Year 2023
Published
Abstract The concept of monomer recovery from plastic waste has recently gained broad interest in industry as a powerful strategy to reduce the environmental impacts of chemical production and plastic waste pollution. Herein, we focus on the ethylene recovery from plastic waste via thermochemical pathways, such as pyrolysis, gasification, and steam cracking of pyrolysis oil derived from plastic waste. Ethylene recovery performance of different thermochemical conversion processes is evaluated and compared with respect to plastic waste types, process types, ethylene recovery yields, and process operating conditions. Based on the analysis of available data in earlier literature, future research is recommended to further enhance the viability of the thermochemical ethylene recovery technologies. This review is expected to offer a meaningful guideline on developing efficient platforms for the value-added monomer recovery from plastic waste through thermochemical conversion routes. It is also hoped that this review serves as a preliminary step to encourage the widespread adoption of thermochemical conversion-based ethylene recovery from plastic waste by industries.
PDF

Similar Articles

ID Score Article
10292 Soni, VK; Singh, G; Vijayan, BK; Chopra, A; Kapur, GS; Ramakumar, SSV Thermochemical Recycling of Waste Plastics by Pyrolysis: A Review(2021)Energy & Fuels, 35, 16
24832 Bozkurt, OD; Okonsky, ST; Alexopoulos, K; Toraman, HE Catalytic conversion of SPW and products upgrading(2022)
18522 Hernández, B; Kots, P; Selvam, E; Vlachos, DG; Ierapetritou, MG Techno-Economic and Life Cycle Analyses of Thermochemical Upcycling Technologies of Low-Density Polyethylene Waste(2023)Acs Sustainable Chemistry & Engineering, 11.0, 18
5931 Dai, LL; Zhou, N; Lv, YC; Cheng, YL; Wang, YP; Liu, YH; Cobb, K; Chen, PL; Lei, HW; Ruan, RG Pyrolysis technology for plastic waste recycling: A state-of-the-art review(2022)
19954 Tang, KY; Chan, CY; Chai, CHT; Low, BQL; Toh, ZY; Wong, BWL; Heng, JZX; Li, ZB; Lee, CLK; Loh, XJ; Wang, CH; Ye, EY Thermochemical Valorization of Waste Plastic for Production of Synthetic Fuels, Fine Chemicals, and Carbon Nanotubes(2024)Acs Sustainable Chemistry & Engineering, 12.0, 5
14584 Nazarloo, NH; Zabihi, O; Shirvanimoghaddam, K; Ahmadi, M; Zamani, P; Naebe, M Innovative Ex-Situ catalyst bed integration for LDPE plastic Pyrolysis: A thermodynamically closed system approach(2024)
7476 Martínez-Narro, G; Hassan, S; Phan, AN Chemical recycling of plastic waste for sustainable polymer manufacturing - A critical review(2024)Journal Of Environmental Chemical Engineering, 12, 2
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
9689 Lindfors, C; Khan, M; Siddiq, F; Arnold, M; Ohra-aho, T Catalytic Processing of Mixed Plastics Aiming for Industrial Reuse(2024)Energy & Fuels, 38.0, 9
12478 Anglou, E; Ganesan, A; Golabek, KM; Chang, YC; Fu, Q; Bradley, W; Jones, CW; Sievers, C; Nair, S; Boukouvala, F Process development and techno-economic analysis for mechanochemical recycling of poly(ethylene terephthalate)(2024)
Scroll