Knowledge Agora



Similar Articles

Title Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment
ID_Doc 19870
Authors Dutta, T; Kim, T; Vellingiri, K; Tsang, DCW; Shon, JR; Kim, KH; Kumar, S
Title Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment
Year 2019
Published
Abstract Recyclability is a prerequisite for successful commercialization of new adsorbent materials. For the recycling, adsorbents should have high desorption efficiency at low economic and energy costs. Here, a comprehensive review is offered to describe the strategies for thermal or solvent-assisted (chemical) regeneration of carbonaceous materials derived from diverse bioresources (e.g., activated carbon, biochar, and hydrochar) along with other common or novel adsorbents (e.g., natural/synthetic zeolites and metal-organic frameworks). Our study reveals thermal regeneration as the most common recycling manoeuvre due to the simplicity of reactor design. However, the use of high temperatures during thermal treatments perturbs key surface attributes of adsorbents through oxidation, polymerization (of functional groups/entities), or framework breakdown. In contrast, solvent-assisted methods generate waste solvents and causes chemical degradation. The polarity of the solvents plays a pivotal role in performance of regenerated sorbents or regeneration potential due to strong adsorbatead-sorbent interaction (e.g., electrostatic and pi-pi interaction). Note that, for the selection of any adsorbent, there is inherently contradictory structural requirement between selective adsorption (favored by smaller pore space) and efficient desorption (favored by larger pores). Nonetheless, recent introduction of 'smart adsorbents' strikes the right balance between such opposing characteristics. Overall, a vast assemblage of adsorbents and hybrid regeneration techniques developed in recent times (2012-2018) signals the emergence of application-directed synthesis, self-assembly, and desorption-degradation coupling to make adsorptive removal process environmentally benign and scalable.
PDF

Similar Articles

ID Score Article
9298 Liu, YJ; Biswas, B; Hassan, M; Naidu, R Green Adsorbents for Environmental Remediation: Synthesis Methods, Ecotoxicity, and Reusability Prospects(2024)Processes, 12.0, 6
21478 Faheem, M; Hassan, MA; Du, JK; Wang, B Harnessing potential of smart and conventional spent adsorbents: Global practices and sustainable approaches through regeneration and tailored recycling(2025)
12926 Wang, J; Yang, QF; Yang, WX; Pei, HN; Zhang, L; Zhang, TS; Hu, N; Suo, YR; Wang, JL Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: from recovered heavy metal to efficient pollutant decontamination(2018)Journal Of Materials Chemistry A, 6.0, 34
24555 Patel, S; Marzbali, MH; Hakeem, IG; Veluswamy, G; Rathnayake, N; Nahar, K; Agnihotri, S; Bergmann, D; Surapaneni, A; Gupta, R; Sharma, A; Shah, KL Production of H2 and CNM from biogas decomposition using biosolids-derived biochar and the application of the CNM-coated biochar for PFAS adsorption(2023)
12931 Allouss, D; Dupont, A; Achouri, IE; Abatzoglou, N Hydrothermal conversion of Cu-laden biomass to one-step doped hydrochar used as a potential adsorbent for 2-nitrophenol removal(2024)
6368 Hu, JW; Zhao, L; Luo, JM; Gong, HB; Zhu, NW A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives(2022)
14011 Dziejarski, B; Serafin, J; Andersson, K; Krzyzynska, R CO2 capture materials: a review of current trends and future challenges(2023)
23513 Tuomikoski, S; Runtti, H; Romar, H; Lassi, U; Kangas, T Multiple heavy metal removal simultaneously by a biomass-based porous carbon(2021)Water Environment Research, 93, 8
6093 Pereira, L; Castillo, V; Calero, M; González-Egido, S; Martín-Lara, MA; Solís, RR Promoting the circular economy: Valorization of a residue from industrial char to activated carbon with potential environmental applications as adsorbents(2024)
21987 Acevedo-Garcia, V; Rosales, E; Puga, A; Pazos, M; Sanromán, MA Synthesis and use of efficient adsorbents under the principles of circular economy: Waste valorisation and electroadvanced oxidation process regeneration(2020)
Scroll