Knowledge Agora



Similar Articles

Title Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters
ID_Doc 19931
Authors Payne, JM; Kociok-Köhn, G; Emanuelsson, EAC; Jones, MD
Title Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters
Year 2021
Published Macromolecules, 54.0, 18
Abstract The synthesis and characterization of two homoleptic Zn(II)- and Mg(II)-complexes based on a simple tridentate {NNO} ligand are reported. The production of biocompatible atactic poly(lactic acid) (PLA) under industrially relevant melt conditions is demonstrated, noting high activity for Zn(1)(2) at room temperature in CH2Cl2 (TOF = 184 h(-1)). Mg(1)(2) and Zn(1)(2) were shown to facilitate rapid PLA methanolysis into methyl lactate (Me-LA) under mild conditions, achieving up to 85% Me-LA yield within 30 min at 50 degrees C in THF. Further kinetic analysis found Mg(1)(2) and Zn(1)(2) to exhibit k(app) values of 0.23 +/- 0.0076 and 0.15 +/- 0.0029 min(-1), respectively {8 wt % cat. loading}, among the highest reported thus far. Zn(1)(2) retained excellent activity for both poly(ethylene terephthalate) (PET) and poly(epsilon-caprolactone) (PCL) degradations, demonstrating catalyst versatility. Various upcycling strategies (e.g., methanolysis, glycolysis, and aminolysis) were employed to achieve a broad substrate scope, which included bis(2-hydroxyethyl) terephthalate (BHET), high value terephthalamides, and methyl 6-hydroxyhexanoate. Optimal glycolysis conditions using Zn(1)(2) enabled 64% BHET yield within 1 h at 180 degrees C, a rare example of PET glycolysis mediated by a discrete homogeneous metal-based catalyst. The application of such catalysts for PET aminolysis and PCL methanolysis has been reported for the first time.
PDF https://researchportal.bath.ac.uk/files/225844503/Macromolecules_NOT_highlighted.pdf

Similar Articles

ID Score Article
6237 Lamberti, FM; Roman-Ramírez, LA; Dove, AP; Wood, J Methanolysis of Poly(lactic Acid) Using Catalyst Mixtures and the Kinetics of Methyl Lactate Production(2022)Polymers, 14, 9
14001 D'Alterio, MC; D'Auria, I; Gaeta, L; Tedesco, C; Brenna, S; Pellecchia, C Are Well Performing Catalysts for the Ring Opening Polymerization of L-Lactide under Mild Laboratory Conditions Suitable for the Industrial Process? The Case of New Highly Active Zn(II) Catalysts(2022)Macromolecules, 55, 12
19513 Román-Ramírez, LA; McKeown, P; Jones, MD; Wood, J Kinetics of Methyl Lactate Formation from the Transesterification of Polylactic Acid Catalyzed by Zn(II) Complexes(2020)Acs Omega, 5.0, 10
19832 Payne, JM; Kamran, M; Davidson, MG; Jones, MD Versatile Chemical Recycling Strategies: Value-Added Chemicals from Polyester and Polycarbonate Waste(2022)Chemsuschem, 15.0, 8
21053 Becker, T; Hermann, A; Saritas, N; Hoffmann, A; Herres-Pawlis, S Open- and Closed-Loop Recycling: Highly Active Zinc Bisguanidine Polymerization Catalyst for the Depolymerization of Polyesters(2024)
18628 Liu, S; Hu, L; Liu, JY; Zhang, ZS; Suo, HY; Qin, YS Zinc Catalyst for Chemical Upcycling of PLA Wastes: Novel Industrial Monomer Resource toward Poly(ester-amide)(2024)Macromolecules, 57.0, 10
19878 Nifant'ev, IE; Pyatakov, DA; Tavtorkin, AN; Ivchenko, PV Chemical recycling and upcycling of poly(Bisphenol A carbonate) via metal acetate catalyzed glycolysis(2023)
22788 Fuchs, M; Schäfer, PM; Wagner, W; Krumm, I; Walbeck, M; Dietrich, R; Hoffmann, A; Herres-Pawlis, S A Multitool for Circular Economy: Fast Ring-Opening Polymerization and Chemical Recycling of (Bio)polyesters Using a Single Aliphatic Guanidine Carboxy Zinc Catalyst(2023)Chemsuschem, 16.0, 12
7999 Santulli, F; Pappalardo, D; Lamberti, M; Amendola, A; Barba, C; Sessa, A; Tepedino, G; Mazzeo, M Simple and Efficient Zinc Catalysts for Synthesis and Chemical Degradation of Polyesters(2023)Acs Sustainable Chemistry & Engineering, 11, 43
14748 Badia, JD; Ballesteros-Garrido, R; Gamir-Cobacho, A; Gil-Castell, O; Cháfer, A Chemical recycling of post-consumer poly(ethylene terephthalate) (PET) driven by the protic ionic liquid 2-HEAA: Performance, kinetics and mechanism(2024)Journal Of Environmental Chemical Engineering, 12, 4
Scroll