Knowledge Agora



Similar Articles

Title Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater-A laboratory study
ID_Doc 19937
Authors Djordjievski, S; Yemendzhiev, H; Koleva, R; Nenov, V; Medic, D; Trifunovic, V; Maksimovic, A
Title Application of microbial fuel cell for simultaneous treatment of metallurgical and municipal wastewater-A laboratory study
Year 2022
Published Journal Of The Serbian Chemical Society, 87.0, 6
Abstract Microbial fuel cell (MFC) is a hybrid technology that produces electricity and recovers resources from wastewater through biocatalytic and electrochemical reactions. Metallurgical facilities in Bor, Serbia, are a source of copper-rich metallurgical wastewater, and the Town of Bor is a source of municipal wastewater rich in organic matter. The aim of this paper is to investigate the possibility of application of MFC for the treatment of metallurgical and municipal wastewater that are released into the Bor River in Serbia. A prototype of MFC was constructed for this study, and 3 sets of experiments were performed using model solutions and real wastewater. Copper was successfully removed from the treated model solution with 99.42 % efficiency. Solid copper particles were obtained with a particle size of about 1 mu m. Maximum chemical oxygen demand (COD) removal rate of 191.7 mg L-1 h-1 was observed in the anodic compartment. The impact of this study is significant because MFC was implemented for the simultaneous treatment of two types of wastewaters, one containing metals and the other containing organic matter, and both types of wastewater are released into the same river.
PDF https://doi.org/10.2298/jsc211008009d

Similar Articles

ID Score Article
17465 Koleva, R; Peeva, G; Yemendzhiev, H; Nenov, V Potential Use of Microbial Fuel Cell Technology in Wastewater Treatment(2022)Processes, 10, 3
9762 Cecconet, D; Molognoni, D; Callegari, A; Capodaglio, AG Agro-food industry wastewater treatment with microbial fuel cells: Energetic recovery issues(2018)International Journal Of Hydrogen Energy, 43.0, 1
14709 Sonawane, JM; Mahadevan, R; Pandey, A; Greener, J Recent progress in microbial fuel cells using substrates from diverse sources(2022)Heliyon, 8, 12
10492 Liu, SH; Lai, CY; Chang, PH; Lin, CW; Chen, YH Enhancing copper recovery and electricity generation from wastewater using low-cost membrane-less microbial fuel cell with a carbonized clay cup as cathode(2020)
13702 Sriwichai, N; Sangcharoen, R; Saithong, T; Simpson, D; Goryanin, I; Boonapatcharoen, N; Kalapanulak, S; Panichnumsin, P Optimization of microbial fuel cell performance application to high sulfide industrial wastewater treatment by modulating microbial function(2024)Plos One, 19, 6
5335 Deng, SH; Wang, CQ; Ngo, HH; Guo, WS; You, N; Tang, H; Yu, HB; Tang, L; Han, J Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality(2023)
24544 Kurniawan, TA; Othman, MHD; Liang, X; Ayub, M; Goh, HH; Kusworo, TD; Mohyuddin, A; Chew, KW Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development(2022)Sustainability, 14, 24
8002 Abubackar, HN; Biryol, I; Ayol, A Yeast industry wastewater treatment with microbial fuel cells: Effect of electrode materials and reactor configurations(2023)International Journal Of Hydrogen Energy, 48, 33
6724 Bhattacharya, A; Neena, M; Chatterjee, P Microbial nutrient recovery cell as an efficient and sustainable nutrient recovery option in sewage treatment(2024)
13932 Mukherjee, A; Zaveri, P; Patel, R; Shah, MT; Munshi, NS Optimization of microbial fuel cell process using a novel consortium for aromatic hydrocarbon bioremediation and bioelectricity generation(2021)
Scroll