Knowledge Agora



Similar Articles

Title Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions
ID_Doc 20044
Authors Angelini, F; Bellini, E; Marchetti, A; Salvatori, G; Villano, M; Pontiggia, D; Ferrari, S
Title Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions
Year 2024
Published
Abstract Microalgae are promising resources for the sustainable production of biofuels, feed, and high-value chemicals. Several strains can grow heterotrophically or mixotrophically on multiple organic substrates even if the high cost associated to their use can hinder scalability and economical sustainability of the overall process. The use of agrifood waste biomass hydrolysates might make the cultivation procedure more sustainable, while at the same time valorising underutilized by-products. In this study, Chlorella vulgaris biomass production and sugar utilization was investigated during mixotrophic cultivation on hydrolysates of two inexpensive and widely available recalcitrant agri-food waste biomasses: barley straw (BS) and citrus processing waste (CPW). CPW hydrolysate supported enhanced biomass production, compared to BS digestate, likely because of the presence, besides glucose, of significant amounts of galactose, which is rapidly metabolized by the algae. Notably, when pure monosaccharides were provided as sole organic carbon, growth stopped before complete sugar consumption. Arrested growth in presence of pure monosaccharides correlated with a drastic drop in extracellular pH, which appears to depend on both carbon and nitrogen sources. Our results show that mixotrophic cultivation of C. vulgaris on BS or CPW hydrolysates results in more efficient conversion of organic carbon into biomass, compared to growth on pure sugars, indicating that these agri-food by-products can be utilized as valid feedstocks for sustainable algal biomass production.
PDF https://doi.org/10.1016/j.algal.2023.103358

Similar Articles

ID Score Article
22779 Rossi, S; Carecci, D; Proietti, L; Parati, K; Ficara, E Enhancing the environmental and economic sustainability of heterotrophic microalgae cultivation: Kinetic modelling and screening of alternative carbon sources(2024)
14148 Sitthikitpanya, N; Sittijunda, S; Khamtib, S; Reungsang, A Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept(2021)Biotechnology For Biofuels, 14, 1
15412 Alhajeri, NS; Tawfik, A; Al-Fadhli, FM; Nasr, M Enhancing hydrogen production and biochar recovery from algal biomass: A novel techno-economic synergism with gelatinous digestate(2024)
14489 Verma, R; Suthar, S; Chand, N; Mutiyar, PK Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system(2022)
15119 Plöhn, M; Scherer, K; Stagge, S; Jönsson, LJ; Funk, C Utilization of Different Carbon Sources by Nordic Microalgae Grown Under Mixotrophic Conditions(2022)
20081 Rodrigues, DM; da Silva, MF; de Mélo, AHF; Carvalho, PH; Baudel, HM; Goldbeck, R Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives(2024)
20109 Wang, X; Qin, ZH; Hao, TB; Ye, GB; Mou, JH; Balamurugan, S; Bin, XY; Buhagiar, J; Wang, HM; Lin, CSK; Yang, WD; Li, HY A combined light regime and carbon supply regulation strategy for microalgae-based sugar industry wastewater treatment and low-carbon biofuel production to realise a circular economy(2022)
24111 Marques, F; Pereira, F; Machado, L; Martins, JT; Pereira, RN; Costa, MM; Genisheva, Z; Pereira, H; Vicente, AA; Teixeira, JA; Geada, P Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate(2024)Foods, 13, 7
10750 Talapatra, N; Ghosh, UK New concept of biodiesel production using food waste digestate powder: Co-culturing algae-activated sludge symbiotic system in low N and P paper mill wastewater(2022)
24522 Schoeters, F; Thoré, ESJ; De Cuyper, A; Noyens, I; Goossens, S; Lybaert, S; Meers, E; Van Miert, S; de Souza, MF Microalgal cultivation on grass juice as a novel process for a green biorefinery(2023)
Scroll