Knowledge Agora



Similar Articles

Title Techno-economic analysis of single-stage and temperature-phase anaerobic co-digestion of sewage sludge, wine vinasse, and poultry manure
ID_Doc 20412
Authors Sillero, L; Sganzerla, WG; Carneiro, TF; Solera, R; Perez, M
Title Techno-economic analysis of single-stage and temperature-phase anaerobic co-digestion of sewage sludge, wine vinasse, and poultry manure
Year 2023
Published
Abstract Anaerobic co-digestion (AcoD) is a mature and consolidated waste management technology that can transform agro-industrial by-products into biogas and digestate. This study conducted a techno-economic assessment of bioenergy and agricultural fertilizer production from AcoD of sewage sludge, wine vinasse, and poultry manure. In this case study, three configurations were investigated: i) Scenario 1, AcoD in thermophilic temperature; ii) Scenario 2, AcoD in mesophilic temperature; and iii) Scenario 3, AcoD in a temperature phase (TPAD) system, where the digestate produced in the first reactor (thermophilic) feeds the second reactor (mesophilic). The process was designed to manage 24,022 m3 wine vinasse y-1, 24,022 m3 sewage sludge y-1, and 480 m3 poultry manure y-1. The major cost was the fixed capital investment for the single-stage (320,981 USD) and TPAD processes (379,698 USD). The TPAD process produced the highest electricity (1058.99 MWh y-1) and heat (4765.47 GJ y-1) with the lowest cost of manufacturing for electricity (84.99 USD MWh-1), heat (0.019 USD MJ-1), and fertilizer (30.91 USD t-1). Regarding the profitability indicators, the highest net present value (509,011 USD) and the lowest payback time (4.24 y) were achieved for Scenario 3. In conclusion, TPAD is a profitable and sustainable waste-to-energy management technology that can be applied in a circular economy framework to recover bioenergy and fertilizer, contributing to decreasing the carbon footprint of the agri-food sector.
PDF

Similar Articles

ID Score Article
5370 Sillero, L; Perez, M; Solera, R Temperature-phased enhanced the single-stage anaerobic co-digestion of sewage sludge, wine vinasse and poultry manure: Perspetives for the circular economy(2023)
15490 Azevedo, A; Lapa, N; Moldao, M; Duarte, E Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review(2023)
13384 Tena, M; Buller, LS; Sganzerla, WG; Berni, M; Forster-Carneiro, T; Solera, R; Pérez, M Techno-economic evaluation of bioenergy production from anaerobic digestion of by-products from ethanol flex plants(2022)
14368 Montoro, SB; Lucas, J; Santos, DFL; Costa, MSSM Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production(2019)
3603 Dhungana, B; Lohani, SP; Marsolek, M Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals(2022)Sustainability, 14, 6
18151 López, RA; Tena, M; Solera, R; Pérez, M Anaerobic co-digestion of sewage sludge and wine vinasse mixtures in single-stage and sequential-temperature processes(2023)
3900 Hidalgo, D; Martín-Marroquín, JM; Corona, F A multi-waste management concept as a basis towards a circular economy model(2019)
29025 Antoniou, N; Monlau, F; Sambusiti, C; Ficara, E; Barakat, A; Zabaniotou, A Contribution to Circular Economy options of mixed agricultural wastes management: Coupling anaerobic digestion with gasification for enhanced energy and material recovery(2019)
5808 Sganzerla, WG; Tena-Villares, M; Buller, LS; Mussatto, SI; Forster-Carneiro, T Dry Anaerobic Digestion of Food Industry by-Products and Bioenergy Recovery: A Perspective to Promote the Circular Economy Transition(2022)Waste And Biomass Valorization, 13, 5
6934 Sillero, L; Perez, M; Solera, R Optimisation of anaerobic co-digestion in two-stage systems for hydrogen, methane and biofertiliser production(2024)
Scroll