Knowledge Agora



Similar Articles

Title Livestock wastewater bioremediation through indigenous microalgae culturing as a circular bioeconomy approach as cattle feed
ID_Doc 20627
Authors Blanco-Vieites, M; Alvarez-Gil, M; Delgado, F; García-Ruesgas, L; Rodríguez, E
Title Livestock wastewater bioremediation through indigenous microalgae culturing as a circular bioeconomy approach as cattle feed
Year 2024
Published
Abstract Growing human population demands the enhancement intensive livestock activities, which lead to severe environmental issues like water pollution. Cattle wastewater is rich in some inorganic pollutants, mainly nitrogen and phosphorous, which might constitute a risk to water bodies. Considering this scenario, microalgae's capacity to develop within manure wastewater is attracting interest, mainly for simultaneous wastewater bioremediation and biomass production. The aim of this work was evaluating the response of several microalgae strains to increasing percentages of unsterilized cattle farm wastewater. Moreover, this study also analyses the possibility of enhancing the development of indigenous native microalgal strains, to create a bioremediation system based on previously adapted species, which specific diversity was determined through taxonomic techniques. Two monospecific Chlorophyceae strains were used: Chlorella sp. and Coelastrella cogersae; and one Cyanobacteria strain: Arthrospira platensis. Experimental assays were conducted in 6 groups and triplicates with increasing percentages of Livestock wastewater (LW): control, 15, 25, 35, 50 and 70 %. All the strains tested showed that cattle wastewater represented a source of metabolic stress for microalgae development. Nevertheless, the autochthonous microalgal bloom showed better results in terms of tolerance to wastewater percentage and development under same conditions Laboratory scale results showed that microalgae could develop with optimum results in presence of 15 % of wastewater, reaching absorbance values close to 90 % of the achieved by control cultures. Moreover, indigenous microalgae cultures were scaled up to open type industrial systems (raceways) and influence of their growth on wastewater composition was evaluated. Results showed a severe reduction of the concentration of nitrates to 43.4 (mg center dot L-1) (20 % of initial measurements). Moreover, the obtained biomass showed a biochemical profile similar to traditional crops, in terms of proteins and carbohydrates (48 and 41 % respectively), suggesting that this biomass could be further valuated into cattle feed as a circular economy approach.
PDF https://doi.org/10.1016/j.algal.2024.103424

Similar Articles

ID Score Article
24643 Thoré, ESJ; Schoeters, F; De Cuyper, A; Vleugels, R; Noyens, I; Bleyen, P; Van Miert, S Waste Is the New Wealth - Recovering Resources From Poultry Wastewater for Multifunctional Microalgae Feedstock(2021)
12761 Catone, CM; Ripa, M; Geremia, E; Ulgiati, S Bio-products from algae-based biorefinery on wastewater: A review(2021)
23521 Esteves, AF; Soares, SM; Salgado, EM; Boaventura, RAR; Pires, JCM Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal(2022)Applied Sciences-Basel, 12, 24
10361 Lakshmikandan, M; Yang, F; Ye, SS; Liu, YK; Chang, C; Yang, YY; Wen, HY; Ameen, F; Li, M Enhancing nutrient removal of agricultural and agro-industrial wastewater utilizing symbiotic microalgal co-cultivation systems to optimize sustainable resource recovery(2024)
24623 Mondal, S; Bera, S; Mishra, R; Roy, S Redefining the role of microalgae in industrial wastewater remediation(2022)
12673 Kashem, AHM; Das, P; AbdulQuadir, M; Khan, S; Thaher, MI; Alghasal, G; Hawari, AH; Al-Jabri, H Microalgal bioremediation of brackish aquaculture wastewater(2023)
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
5852 Silveira, CF; de Assis, LR; Oliveira, APD; Calijuri, ML Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation(2021)
13991 Gogonin, AV; Shchemelinina, TN; Anchugova, EM Utilization of wastewaters as a nutrient medium for the accumulation of microalgal biomass(2022)
15122 Carneiro, M; Ranglová, K; Lakatos, GE; Manoel, JAC; Grivalsky, T; Kozhan, DM; Toribio, A; Moreno, J; Otero, A; Varel, J; Malcata, FX; Estrella, FS; Acién-Fernándéz, G; Molnár, Z; Ördög, V; Masojídek, J Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source(2021)
Scroll