Knowledge Agora



Similar Articles

Title Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties
ID_Doc 20930
Authors Al-Hamrani, A; Kucukvar, M; Alnahhal, W; Mahdi, E; Onat, NC
Title Green Concrete for a Circular Economy: A Review on Sustainability, Durability, and Structural Properties
Year 2021
Published Materials, 14, 2
Abstract A primary concern of conventional Portland cement concrete (PCC) is associated with the massive amount of global cement and natural coarse aggregates (NCA) consumption, which causes depletion of natural resources on the one hand and ecological problems on the other. As a result, the concept of green concrete (GC), by replacing cement with supplementary cementitious materials (SCMs) such as ground granulated blast furnace slag (GGBFS), fly ash (FA), silica fume (SF), and metakaolin (MK), or replacing NCA with recycled coarse aggregates, can play an essential role in addressing the environmental threat of PCC. Currently, there is a growing body of literature that emphasizes the importance of implementing GC in concrete applications. Therefore, this paper has conducted a systematic literature review through the peer-reviewed literature database Scopus. A total of 114 papers were reviewed that cover the following areas: (1) sustainability benefits of GC, (2) mechanical behavior of GC in terms of compressive strength, (3) durability properties of GC under several environmental exposures, (4) structural performance of GC in large-scale reinforced beams under shear and flexure, and (5) analytical investigation that compares the GC shear capacities of previously tested beams with major design codes and proposed models. Based on this review, the reader will be able to select the optimum replacement level of cement with one of the SCMs to achieve a certain concrete strength range that would suit a certain concrete application. Also, the analysis of durability performance revealed that the addition of SCMs is not recommended in concrete exposed to a higher temperature than 400 degrees C. Moreover, combining GGBFS with FA in a concrete mix was noticed to be superior to PCC in terms of long-term resistance to sulfate attack. The single most striking observation to emerge from the data comparison of the experimentally tested beams with the available concrete shear design equations is that the beams having up to 70% of FA as a replacement to OPC or up to 100% of RCA as a replacement to NCA were conservatively predicted by the equations of Japan Society of Civil Engineers (JSCE-1997), the American Concrete Institute (ACI 318-19), and the Canadian Standards Association (CSA-A23.3-14).
PDF https://www.mdpi.com/1996-1944/14/2/351/pdf?version=1610536256

Similar Articles

ID Score Article
14575 Cassiani, J; Martinez-Arguelles, G; Peñabaena-Niebles, R; Kessler, S; Dugarte, M Sustainable concrete formulations to mitigate Alkali-Silica reaction in recycled concrete aggregates (RCA) for concrete infrastructure(2021)
13108 Jhatial, AA; Nováková, I; Gjerlow, E A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods(2023)Buildings, 13.0, 2
9577 Chishi, AK; Gautam, L Sustainable use of silica fume in green cement concrete production: a review(2023)Innovative Infrastructure Solutions, 8.0, 7
15452 Moreno-Juez, J; Vegas, IJ; Gebremariam, AT; Garcia-Cortes, V; Di Maio, F Treatment of end-of-life concrete in an innovative heating-air classification system for circular cement-based products(2020)
21337 Caneda-Martínez, L; Monasterio, M; Moreno-Juez, J; Martínez-Ramírez, S; García, R; Frías, M Behaviour and Properties of Eco-Cement Pastes Elaborated with Recycled Concrete Powder from Construction and Demolition Wastes(2021)Materials, 14.0, 5
12680 Font, A; Soriano, L; Tashima, MM; Monzó, J; Borrachero, MV; Payá, J One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment(2020)
12140 Moreno, S; Rosales, M; Rosales, J; Agrela, F; Díaz-López, JL Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements(2024)Materials, 17.0, 4
6106 Tariq, H; Siddique, RMA; Shah, SAR; Azab, M; Attiq-Ur-Rehman; Qadeer, R; Ullah, MK; Iqbal, F Mechanical Performance of Polymeric ARGF-Based Fly Ash-Concrete Composites: A Study for Eco-Friendly Circular Economy Application(2022)Polymers, 14, 9
3251 Chen, LJ; Huang, ZY; Pan, W; Su, RKL; Zhong, Y; Zhang, Y Low carbon concrete for prefabricated modular construction in circular economy: An integrated approach towards sustainability, durability, cost, and mechanical performances(2024)
9525 Le, HB; Bui, QB; Tang, LP Geopolymer Recycled Aggregate Concrete: From Experiments to Empirical Models(2021)Materials, 14.0, 5
Scroll