Knowledge Agora



Similar Articles

Title Environmentally Friendly Recovery of Lithium from Lithium-Sulfur Batteries
ID_Doc 21108
Authors Schwich, L; Friedrich, B
Title Environmentally Friendly Recovery of Lithium from Lithium-Sulfur Batteries
Year 2022
Published Metals, 12.0, 7
Abstract In the context of the rising demand for electric storage systems, lithium-sulfur batteries provide an attractive solution for low-weight and high-energy battery systems. Considering circular economy for new technologies, it is necessary to assure the raw material requirements for future generations. Therefore, metallurgical recycling processes are required. Since lithium is the central and most valuable element used in lithium-sulfur batteries, this study presents an environmentally friendly and safe process for lithium recovery as lithium carbonate. The developed and experimentally performed process is a combination of thermal and hydrometallurgical methods. Firstly, the battery cells are thermally deactivated to mechanically extract black mass. Then, water leaching of the black mass in combination with using CO2, instead of emitting it, can mobilize lithium by >90% as solid product.
PDF https://www.mdpi.com/2075-4701/12/7/1108/pdf?version=1656413713

Similar Articles

ID Score Article
14824 Schwich, L; Schubert, T; Friedrich, B Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation(2021)Metals, 11, 2
24867 Pavón, S; Kaiser, D; Mende, R; Bertau, M The COOL-Process-A Selective Approach for Recycling Lithium Batteries(2021)Metals, 11, 2
30035 Barnwal, A; Balakrishna, M; Bais, P; Nair, RKS; Ravendran, R; Kaushal, A Effective Methodology for Selective Recovery of Lithium Values from Discarded Li-Ion Batteries(2023)Jom, 75.0, 4
9511 Raj, B; Sahoo, MK; Nikoloski, A; Singh, P; Basu, S; Mohapatra, M Retrieving Spent Cathodes from Lithium-Ion Batteries through Flourishing Technologies(2023)Batteries & Supercaps, 6.0, 1
11073 Cao, Y; Li, JF; Ji, HC; Wei, XJ; Zhou, GM; Cheng, HM A review of direct recycling methods for spent lithium-ion batteries(2024)
15512 Swain, B Recovery and recycling of lithium: A review(2017)
10370 Zhang, YS; Schneider, K; Qiu, H; Zhu, HL A perspective of low carbon lithium-ion battery recycling technology(2022)
21099 Aannir, M; Hakkou, R; Levard, C; Taha, Y; Ghennioui, A; Rose, J; Saadoune, I Towards a closed loop recycling process of end-of-life lithium-ion batteries: Recovery of critical metals and electrochemical performance evaluation of a regenerated LiCoO2(2023)
23987 Pavón, S; Kaiser, D; Bertau, M Recovery of Al, Co, Cu, Fe, Mn, and Ni from spent LIBs after Li selective separation by COOL-Process - Part 2: Solvent Extraction from Sulphate Leaching Solution(2021)Chemie Ingenieur Technik, 93, 11
10397 Liu, JD; Mak, TY; Meng, Z; Wang, XY; Cao, YL; Lu, ZG; Suen, DWS; Lu, XY; Tang, YY Efficient recovery of lithium as Li2CO3 and cobalt as Co3O4 from spent lithium-ion batteries after leaching with p-toluene sulfonic acid(2023)
Scroll