Knowledge Agora



Similar Articles

Title Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review
ID_Doc 21118
Authors Viotti, P; Marzeddu, S; Antonucci, A; Decima, MA; Lovascio, P; Tatti, F; Boni, MR
Title Biochar as Alternative Material for Heavy Metal Adsorption from Groundwaters: Lab-Scale (Column) Experiment Review
Year 2024
Published Materials, 17.0, 4
Abstract The purpose of this manuscript is to present a review of laboratory experiments (including methodology and results) that use biochar, a specific carbon obtained by a pyrolysis process from different feedstocks, as an alternative material for heavy metal adsorption from groundwater. In recent years, many studies have been conducted regarding the application of innovative materials to water decontamination to develop a more sustainable approach to remediation processes. The use of biochar for groundwater remediation has particularly attracted the interest of researchers because it permits the reuse of materials that would be otherwise disposed of, in accordance with circular economy, and reduces the generation of greenhouse gases if compared to the use of virgin materials. A review of the different approaches and results reported in the current literature could be useful because when applying remediation technologies at the field scale, a preliminary phase in which the suitability of the adsorbent is evaluated at the lab scale is often necessary. This paper is therefore organised with a short description of the involved metals and of the biochar production and composition. A comprehensive analysis of the current knowledge related to the use of biochar in groundwater remediation at the laboratory scale to obtain the characteristic parameters of the process that are necessary for the upscaling of the technology at the field scale is also presented. An overview of the results achieved using different experimental conditions, such as the chemical properties and dosage of biochar as well as heavy metal concentrations with their different values of pH, is reported. At the end, numerical studies useful for the interpretation of the experiment results are introduced.
PDF https://www.mdpi.com/1996-1944/17/4/809/pdf?version=1707416091

Similar Articles

ID Score Article
24478 Biswal, BK; Balasubramanian, R Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review(2023)Journal Of Environmental Chemical Engineering, 11, 5
13435 Fdez-Sanromán, A; Pazos, M; Rosales, E; Sanromán, MA Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review(2020)Applied Sciences-Basel, 10, 21
20225 Marcinczyk, M; Ok, YS; Oleszczuk, P From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars(2022)
21772 Présiga-López, D; Rubio-Clemente, A; Pérez, JF Use of biochar as an alternative material for the treatment of polluted wastewater(2021)Uis Ingenierias, 20.0, 1
15063 Bousdra, T; Papadimou, SG; Golia, EE The Use of biochar in the Remediation of Pb, Cd, and Cu-Contaminated Soils. The Impact of biochar Feedstock and Preparation Conditions on Its Remediation Capacity(2023)Land, 12, 2
21937 Tran, TK; Huynh, L; Nguyen, HL; Nguyen, MK; Lin, CT; Hoang, TD; Hung, NTQ; Nguyen, XH; Chang, SW; Nguyen, DD Applications of engineered biochar in remediation of heavy metal(loid)s pollution from wastewater: Current perspectives toward sustainable development goals(2024)
30025 Gopinath, A; Divyapriya, G; Srivastava, V; Laiju, AR; Nidheesh, P; Kumar, MS Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment(2021)
14309 Gariya, D; Satyavathi, B Designer biochar with specific functionalities for the sustainable mining of invaluable metals from sea water: Performance assessment, mechanism insights and cost benefit analysis(2024)
13773 Nardis, BO; Franca, JR; Carneiro, JSD; Soares, JR; Guilherme, LRG; Silva, CA; Melo, LCA Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution(2022)
28814 Pap, S; Boyd, KG; Taggart, MA; Sekulic, MT Circular economy based landfill leachate treatment with sulphur-doped microporous biochar(2021)
Scroll