Knowledge Agora



Similar Articles

Title Recovery of Phosphorus from Waste Water Profiting from Biological Nitrogen Treatment: Upstream, Concomitant or Downstream Precipitation Alternatives
ID_Doc 21400
Authors Magrí, A; Carreras-Sempere, M; Biel, C; Colprim, J
Title Recovery of Phosphorus from Waste Water Profiting from Biological Nitrogen Treatment: Upstream, Concomitant or Downstream Precipitation Alternatives
Year 2020
Published Agronomy-Basel, 10.0, 7
Abstract Mined phosphate rock is the largest source of phosphorus (P) for use in agriculture and agro-industry, but it also is a finite resource irregularly distributed around the world. Alternatively, waste water is a renewable source of P, available at the local scale. In waste water treatment, biological nitrogen (N) removal is applied according to a wide range of variants targeting the abatement of the ammonium content. Ammonium oxidation to nitrate can also be considered to mitigate ammonia emission, while enabling N recovery. This review focuses on the analysis of alternatives for coupling biological N treatment and phosphate precipitation when treating waste water in view of producing P-rich materials easily usable as fertilisers. Phosphate precipitation can be applied before (upstream configuration), together with (concomitant configuration), and after (downstream configuration) N treatment; i.e., chemically induced as a conditioning pre-treatment, biologically induced inside the reactor, and chemically induced as a refining post-treatment. Characteristics of the recovered products differ significantly depending on the case studied. Currently, precipitated phosphate salts are not typified in the European fertiliser regulation, and this fact limits marketability. Nonetheless, this topic is in progress. The potential requirements to be complied by these materials to be covered by the regulation are overviewed. The insights given will help in identifying enhanced integrated approaches for waste water treatment, pointing out significant needs for subsequent agronomic valorisation of the recovered phosphate salts, according to the paradigms of the circular economy, sustainability, and environmental protection.
PDF https://www.mdpi.com/2073-4395/10/7/1039/pdf?version=1595248387

Similar Articles

ID Score Article
16601 Nenov, V; Peeva, G; Yemendzhiev, H; Stancheva, M; Zerouq, F Phosphorus consumption. From linear to circular flow(2020)Moroccan Journal Of Chemistry, 8, 4
22165 Huygens, D; Saveyn, HGM Agronomic efficiency of selected phosphorus fertilisers derived from secondary raw materials for European agriculture. A meta-analysis(2018)Agronomy For Sustainable Development, 38.0, 5
14641 Di Capua, F; de Sario, S; Ferraro, A; Petrella, A; Race, M; Pirozzi, F; Fratino, U; Spasiano, D Phosphorous removal and recovery from urban wastewater: Current practices and new directions(2022)
25126 Sniatala, B; Al-Hazmi, HE; Sobotka, D; Zhai, J; Makinia, J Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications(2024)
7296 Masindi, V; Foteinis, S Recovery of phosphate from real municipal wastewater and its application for the production of phosphoric acid(2021)Journal Of Environmental Chemical Engineering, 9, 6
10062 Rodrigues, DM; Fragoso, RD; Carvalho, AP; Hein, T; de Brito, AG Recovery of phosphates as struvite from urine-diverting toilets: optimization of pH, Mg:PO4 ratio and contact time to improve precipitation yield and crystal morphology(2019)Water Science And Technology, 80.0, 7
28549 Piscitelli, L; Bennani, Z; El Chami, D; Mondelli, D A Circular Economy Model to Improve Phosphate Rock Fertiliser Using Agro-Food By-Products(2022)Sustainability, 14.0, 23
23750 Sniatala, B; Kurniawan, TA; Sobotka, D; Makinia, J; Othman, D Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively(2023)
14143 Guelfi, D; Nunes, APP; Sarkis, LF; Oliveira, DP Innovative Phosphate Fertilizer Technologies to Improve Phosphorus Use Efficiency in Agriculture(2022)Sustainability, 14, 21
68685 Hogen, T; Barbana, N; Kemper, S; Becker, JM; Al-Addous, M; Geissen, SU A contribution to the development of a process to valorize the wastewater of wet phosphate fertilizer production(2024)Journal Of Environmental Chemical Engineering, 12, 5
Scroll