Knowledge Agora



Similar Articles

Title Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Different Carbon Routes for Organic Carbon Utilization
ID_Doc 21464
Authors Traina, F; Corsino, S; Torregrossa, M; Viviani, G
Title Biopolymer Recovery from Aerobic Granular Sludge and Conventional Flocculent Sludge in Treating Industrial Wastewater: Preliminary Analysis of Different Carbon Routes for Organic Carbon Utilization
Year 2023
Published Water, 15.0, 1
Abstract The recovery of biopolymers from sewage sludge could be a crucial step in implementing circular economy principles in wastewater treatment plants (WWTP). In this frame, the present study was aimed at evaluating the simultaneous production of polyhydroxyalkanoates (PHA) and extracellular polymeric substances (EPS) obtainable from the treatment of agro-industrial wastewater. Two biological enrichment systems, aerobic granular sludge (AGS) and a conventional activated sludge operating as a sequencing batch reactor (SBR), were monitored for 204 and 186 days, respectively. The maximum biopolymers accumulation capacity was close to 0.60 mgPHA-EPS gVSS(-1) in the AGS when operating at 3 kgCODm(-3)d(-1), whereas in the SBR, it was about half (0.35 mgPHA-EPS gVSS(-1)). Biopolymers extracted from the AGS were mainly constituted by EPS (>70%), whose percentage increased up to 95% with the OLR applied in the enrichment reactor. In contrast, SBR enabled obtaining a higher PHA production (50% of the biopolymers). Results suggested that organic carbon was mainly channeled toward metabolic pathways for extracellular storing in AGS, likely due to metabolic stressors (e.g., hydraulic selection pressure, shear forces) applied for promoting aerobic granulation.
PDF https://www.mdpi.com/2073-4441/15/1/47/pdf?version=1671787128

Similar Articles

ID Score Article
22241 Cydzik-Kwiatkowska, A Biopolymers in Aerobic Granular Sludge-Their Role in Wastewater Treatment and Possibilities of Re-Use in Line with Circular Economy(2021)Energies, 14.0, 21
12892 Oliveira, AS; Amorim, CL; Ramos, MA; Mesquita, DP; Inocêncio, P; Ferreira, EC; van Loosdrecht, M; Castro, PML Variability in the composition of extracellular polymeric substances from a full-scale aerobic granular sludge reactor treating urban wastewater(2020)Journal Of Environmental Chemical Engineering, 8.0, 5
27062 Núñez, D; Oulego, P; Collado, S; Riera, FA; Díaz, M Separation and purification techniques for the recovery of added-value biocompounds from waste activated sludge. A review(2022)
14760 Cydzik-Kwiatkowska, A; Bernat, K; Zielinska, M; Gusiatin, MZ; Wojnowska-Baryla, I; Kulikowska, D Valorization of full-scale waste aerobic granular sludge for biogas production and the characteristics of the digestate(2022)
15559 Moretto, G; Russo, I; Bolzonella, D; Pavan, P; Majone, M; Valentino, F An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas(2020)
20829 Capodaglio, AG Biorefinery of Sewage Sludge: Overview of Possible Value-Added Products and Applicable Process Technologies(2023)Water, 15, 6
16567 Gusiatin, MZ; Kulikowska, D; Bernat, K Municipal Sewage Sludge as a Resource in the Circular Economy(2024)Energies, 17, 11
16261 Wisniowska, E; Kowalczyk, M Recovery of Cellulose, Extracellular Polymeric Substances and Microplastics from Sewage Sludge: A Review(2022)Energies, 15, 20
14392 Traina, F; Corsino, S; Capodici, M; Licitra, E; Di Bella, G; Torregrossa, M; Viviani, G Combined recovery of polyhydroxyalkanoates and reclaimed water in the mainstream of a WWTP for agro-food industrial wastewater valorisation by membrane bioreactor technology(2024)
27414 Awasthi, MK; Ganeshan, P; Gohil, N; Kumar, V; Singh, V; Rajendran, K; Harirchi, S; Solanki, MK; Sindhu, R; Binod, P; Zhang, ZQ; Taherzadeh, MJ Advanced approaches for resource recovery from wastewater and activated sludge: A review(2023)
Scroll