Knowledge Agora



Similar Articles

Title A qualitative assessment of lithium ion battery recycling processes
ID_Doc 21614
Authors Sommerville, R; Zhu, PC; Rajaeifar, MA; Heidrich, O; Goodship, V; Kendrick, E
Title A qualitative assessment of lithium ion battery recycling processes
Year 2021
Published
Abstract With the widespread adoption of e-mobility, there are high numbers of lithium Ion batteries (LIB) entering the waste stream. It is imperative that disposal and recycling strategies are developed and implemented. There is an urgent need for safe, environmentally friendly and economically affordable disposal routes for End of Life (EoL) LIBs. This study has looked at 44 commercial recyclers and assessed their recycling and reclamation processes. A novel qualitative assessment matrix termed "Strategic materials Weighting And Value Evaluation" (SWAVE) is proposed and used to compare the strategic importance and value of various materials in EoL LIBs. The sustainability and quality of recycled material are assessed by comparing the final form or composition after the recycling processes, the industrial processes and the industry type (primary sector, manufacturer or recycler). SWAVE is applied to each company, producing a score out of 20, with a higher number indicating that more materials can be recycled. The separation processes and resources from six of the prominent recycling companies are discussed further. The majority of recyclers use one or more of mechanical treatment, pyrometallurgy, or hydrometallurgy, concentrating upon high value metal extraction rather than closed-loop recycling of the metals or component materials, highlighting an environmental and technological gap. To improve the current circular economy of batteries reuse and repurposing of materials (closed-loop recycling), instead of purely recycling or recovery of metals should be considered for further development. Further studies of environmental trade-offs from recycling or recovering one material in preference to another is required.
PDF https://doi.org/10.1016/j.resconrec.2020.105219

Similar Articles

ID Score Article
13521 Tembo, PM; Dyer, C; Subramanian, V Lithium-ion battery recycling-a review of the material supply and policy infrastructure(2024)Npg Asia Materials, 16, 1
22885 Fahimi, A; Ducoli, S; Federici, S; Ye, GZ; Mousa, E; Frontera, P; Bontempi, E Evaluation of the sustainability of technologies to recycle spent lithium-ion batteries, based on embodied energy and carbon footprint(2022)
7361 Yang, Y; Okonkwo, EG; Huang, GY; Xu, SM; Sun, W; He, YH On the sustainability of lithium ion battery industry-A review and perspective(2021)
6650 Ducoli, S; Fahimi, A; Mousa, E; Ye, GZ; Federici, S; Frontera, P; Bontempi, E ESCAPE approach for the sustainability evaluation of spent lithium-ion batteries recovery: Dataset of 33 available technologies(2022)
1935 Goyal, M; Singh, K; Bhatnagar, N Circular economy conceptualization for lithium-ion batteries- material procurement and disposal process(2023)
4416 Mossali, E; Picone, N; Gentilini, L; Rodrìguez, O; Pérez, JM; Colledani, M Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments(2020)
22778 Doose, S; Mayer, JK; Michalowski, P; Kwade, A Challenges in Ecofriendly Battery Recycling and Closed Material Cycles: A Perspective on Future Lithium Battery Generations(2021)Metals, 11.0, 2
4958 Islam, MT; Iyer-Raniga, U Lithium-Ion Battery Recycling in the Circular Economy: A Review(2022)Recycling, 7, 3
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
5960 Ali, H; Khan, HA; Pecht, MG Circular economy of Li Batteries: Technologies and trends(2021)
Scroll