Knowledge Agora



Similar Articles

Title Recycling "waste" nutrients back into RAS and FTS marine aquaculture facilities from the perspective of the circular economy
ID_Doc 21636
Authors Villar-Navarro, E; Garrido-Pérez, C; Perales, JA
Title Recycling "waste" nutrients back into RAS and FTS marine aquaculture facilities from the perspective of the circular economy
Year 2021
Published
Abstract The feasibility of use microalgae biotechnology to improve water quality together with the production of biomass to replace fish meal or fish oil in two marine fish farms with different production systems were studied. The samples were taken from a flow-through system (FTS) and a recirculating aquaculture system (RAS) with sea bass cultures of 300 g and 120 g, respectively. The most suitable stream for microalgae cultivation was that from RAS as the concentration of N in the microalgae reactor influent should be >= 8 mg TN L-1 to operate at the same hydraulic retention time than the solids retention time, independently of the productivity of the reactor. Tetraselmis chuii were cultured in 18 L bubble column reactors under batch and semi-continuous operation in media that mimic a RAS stream. The results showed that RAS systems enriched with trace metals generate viable streams for microalgae growth with average biomass productivity under semi-continuous operation of 69 mg TSS L-1 d(-1). Nutrients concentrations at the end of the experiment under semi-continuous operation were 0.76 mg TDN L-1 and 0.01 mg TDP L-1, similar to those in the make-up water of the RAS. The composition of microalgae biomass obtained shows that it could be optimal as a substitute for fish meal in sea bass feed. (C) 2020 Elsevier B.V. All rights reserved.
PDF

Similar Articles

ID Score Article
15116 Villanova, V; Roques, JAC; Forghani, B; Shaikh, KM; Undeland, I; Spetea, C Two-phase microalgae cultivation for RAS water remediation and high-value biomass production(2023)
27873 Ahmad, A; Hassan, SW; Banat, F An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy(2022)Bioengineered, 13.0, 4
24585 Campanati, C; Willer, D; Schubert, J; Aldridge, DC Sustainable Intensification of Aquaculture through Nutrient Recycling and Circular Economies: More Fish, Less Waste, Blue Growth(2022)Reviews In Fisheries Science & Aquaculture, 30, 2
7633 Gorzelnik, SA; Zhu, XY; Angelidaki, I; Koski, M; Valverde-Pérez, B Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents(2023)
23521 Esteves, AF; Soares, SM; Salgado, EM; Boaventura, RAR; Pires, JCM Microalgal Growth in Aquaculture Effluent: Coupling Biomass Valorisation with Nutrients Removal(2022)Applied Sciences-Basel, 12, 24
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
24747 Sarma, S; Sharma, S; Rudakiya, D; Upadhyay, J; Rathod, V; Patel, A; Narra, M Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery(2021)3 Biotech, 11, 8
15289 Martelli, A; Zualet, TV; Gagliardi, MBM; Rubilar, T Phytoremediation of aquaculture effluents through the use of six marine microalgae: sustainability contributions in the sea urchin aquaculture industry in Argentina(2024)
6232 Li, G; Hu, RC; Wang, N; Yang, TL; Xu, FZ; Li, JL; Wu, JH; Huang, ZG; Pan, MM; Lyu, T Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment(2022)
4835 Pereira, JC; Lemoine, A; Neubauer, P; Junne, S Perspectives for improving circular economy in brackish shrimp aquaculture(2022)Aquaculture Research, 53, 4
Scroll