Knowledge Agora



Similar Articles

Title Preliminary Study on New Alternative Binders through Re-Refined Engine Oil Bottoms (REOBs) and Industrial By-Product Additives
ID_Doc 21746
Authors Porto, M; Caputo, P; Loise, V; Abe, AA; Tarsi, G; Sangiorgi, C; Gallo, F; Rossi, CO
Title Preliminary Study on New Alternative Binders through Re-Refined Engine Oil Bottoms (REOBs) and Industrial By-Product Additives
Year 2021
Published Molecules, 26.0, 23
Abstract Recent studies have worked towards addressing environmental issues such as global warming and greenhouse gas emissions due to the increasing awareness of the depletion of natural resources. The asphalt industry is seeking to implement measures to reduce its carbon footprint and to promote sustainable operations. The reuse of several wastes and by-products is an example of a more eco-friendly activity that fulfils the circular economy principle. Among all possible solutions, the road pavement sector encourages, on one hand, the use of recycled materials as a partial replacement of the virgin lithic skeleton; on the other hand, it promotes the use of recycled materials to substituting for a portion of the petroleum bituminous binder. This study aims to use Re-refined Engine Oil Bottoms (REOBs) as a main substitute and additives from various industrial by-products as a full replacement for virgin bitumen, producing high-performing alternative binders. The REOBs have been improved by utilizing additives in an attempt to improve their specific properties and thus to bridge the gap between REOBs and traditional bituminous binders. An even larger amount of virgin and non-renewable resources can be saved using these new potential alternative binders together with the RAP aggregates. Thus, the reduction in the use of virgin materials is applied at the binder and the asphalt mixture levels. Rheological, spectroscopic, thermogravimetric, and mechanical analysis were used to characterize the properties, composition, and characteristics of the REOBs, REOB-modified binders, and asphalt mixes. Thanks to the rheological investigations of possible alternative binders, 18 blends were selected, since they behaved like an SBS-modified bitumen, and then they were used for producing the corresponding asphalt mixtures. The preliminary mechanical analysis of the asphalt mixtures shows that six mixes have promising responses in terms of stiffness, tensile resistance, and water susceptibility. Nevertheless, the high variability of recycled materials and by-products has to be taken into consideration during the definition of alternative binders and recycled asphalt mixtures. In fact, this study highlights the crucial effects of the chemical composition of the constituents and their compatibility on the behaviour of the final product. This preliminary study represents a first attempt to define alternative binders, which can be used in combination with recycled aggregates for producing more sustainable road materials. However, further analysis is necessary in order to assess the durability and the ageing tendency of the materials.
PDF https://www.mdpi.com/1420-3049/26/23/7269/pdf?version=1638344094

Similar Articles

ID Score Article
21233 Ingrassia, LP; Lu, XH; Ferrotti, G; Conti, C; Canestrari, F Investigating the "circular propensity" of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential(2020)
5599 Caputo, P; Calandra, P; Loise, V; Porto, M; Le Pera, A; Abe, AA; Teltayev, B; Luprano, ML; Alfè, M; Gargiulo, V; Ruoppolo, G; Rossi, CO Physical Chemistry Supports Circular Economy: Toward a Viable Use of Products from the Pyrolysis of a Refuse-Derived Fuel and Granulated Scrap Tire Rubber as Bitumen Additives(2023)Eurasian Chemico-Technological Journal, 25, 3
4411 da Costa, LF; Neto, ODM; de Macêdo, ALF; Lucena, LCDL; Lucena, LDL Optimizing recycled asphalt mixtures with zeolite, cottonseed oil, and varied RAP content for enhanced performance and circular economy impact(2024)
13552 Ding, Z; Jiang, XM; Li, HF; Li, PL; Chen, JR Influences of Waste-Utilizing Rejuvenator on Properties of Recycled Asphalt Binders(2023)Journal Of Materials In Civil Engineering, 35, 1
22607 Di Mino, G; Vijayan, V; Eskandarsefat, S; Venturini, L; Mantalovas, K Investigating the Multi-Recyclability of Recycled Plastic-Modified Asphalt Mixtures(2023)Infrastructures, 8.0, 5
27166 Gaudenzi, E; Canestrari, F; Lu, XH; Cardone, F Performance Analysis of Bio-Based Asphalt Mixtures Containing Lignin(2023)
22914 Ingrassia, LP; Lu, XH; Ferrotti, G; Canestrari, F Chemical and rheological investigation on the short- and long-term aging properties of bio-binders for road pavements(2019)
7618 Pasetto, M; Baliello, A; Pasquini, E; Poulikakos, L Dry Addition of Recycled Waste Polyethylene in Asphalt Mixtures: A Laboratory Study(2022)Materials, 15, 14
15071 Nciri, N; Kim, N From Bin to Binder: Unleashing Waste Butter's Potential as a Pioneering Bio-Modifier for Sustainable Asphalt Engineering(2024)Sustainability, 16, 11
27770 Ingrassia, LP; Lu, XH; Ferrotti, G; Canestrari, F Renewable materials in bituminous binders and mixtures: Speculative pretext or reliable opportunity?(2019)
Scroll