Knowledge Agora



Similar Articles

Title Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine
ID_Doc 21901
Authors Li, FH; Li, YW; Novoselov, KS; Liang, F; Meng, JS; Ho, SH; Zhao, T; Zhou, H; Ahmad, A; Zhu, YL; Hu, LX; Ji, DX; Jia, LT; Liu, R; Ramakrishna, S; Zhang, XC
Title Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine
Year 2023
Published Nano-Micro Letters, 15.0, 1
Abstract We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg(-)(1) and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m(2) g(-)(1) via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m(-)(2) via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
PDF

Similar Articles

ID Score Article
6563 Ye, YY; Guo, WS; Ngo, HH; Wei, W; Cheng, DL; Bui, XT; Hoang, NB; Zhang, HY Biofuel production for circular bioeconomy: Present scenario and future scope(2024)
21260 Kumar, V; Vangnai, AS; Sharma, N; Kaur, K; Chakraborty, P; Umesh, M; Singhal, B; Utreja, D; Carrasco, EU; Andler, R; Awasthi, MK; Taherzadeh, MJ Bioengineering of biowaste to recover bioproducts and bioenergy: A circular economy approach towards sustainable zero-waste environment(2023)
28232 Bhat, MA; Bhat, MA; Jan, SM; Shah, AA; Jan, AT Lignocellulosic biomass in circular economy: A techno-transition in carbon neutrality towards sustainable energy production(2024)
13563 Wu, BT; Lin, RC; O'Shea, R; Deng, C; Rajendran, K; Murphy, JD Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system(2021)
13097 Sikiru, S; Abioye, KJ; Adedayo, HB; Adebukola, SY; Soleimani, H; Anar, M Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review(2024)
6979 Begum, YA; Kumari, S; Jain, SK; Garg, MC A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery(2024)Environmental Science-Advances, 3, 9
10259 Tawfik, A; Ismail, S; Elsayed, M; Qyyum, MA; Rehan, M Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives(2022)
3452 Cao, TND; Mukhtar, H; Yu, CP; Bui, XT; Pan, SY Agricultural waste-derived biochar in microbial fuel cells towards a carbon-negative circular economy(2022)
9021 Srivastava, N; Singh, R; Singh, P; Ahmad, I; Singh, RP; Rai, AK; Asiri, M; Gupta, VK Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment(2023)
16191 Garg, A; Basu, S; Shetti, NP; Bhattu, M; Alodhayb, AN; Pandiaraj, S Biowaste to bioenergy nexus: Fostering sustainability and circular economy(2024)
Scroll