Knowledge Agora



Similar Articles

Title Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash
ID_Doc 21949
Authors Vilarinho, IS; Guimaraes, G; Labrincha, JA; Seabra, MP
Title Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash
Year 2023
Published Materials, 16.0, 21
Abstract The cement sector is the second largest contributor to anthropogenic CO2 emissions, and several efforts have been made to reduce its environmental impact. One alternative that has gained interest in recent years involves the use of municipal solid waste incineration (MSWI) bottom ash (BA) as clinker/cement replacement. This paper studies the application of MSWI BA in three different ways: (i) aggregate (0 to 100 v/v %), (ii) partial binder substitute (0 to 30 v/v %), and (iii) filler (5 v/v %). It stands out for its approach in characterizing seven distinct BA particle sizes and for the development and analysis of eco-cement mortars with only mechanically pre-treated BA. Hardened state properties showed that the use of BA as aggregate leads to deterioration and efflorescence formation on the surface of the mortars, making this application unfeasible. The replacement of 15 v/v % of OPC (Ordinary Portland Cement) by BA and the use of finer (<63 mu m) BA as filler caused a decrease in the compressive strength of the mortar, from 15.8 to 9.3 and 11.0, respectively. However, these materials are suitable for use in walls where the minimum required mechanical resistance is 5 MPa. Furthermore, these mortars demonstrated resilience against freeze-thaw cycles and even exhibited increased compressive strength after 25 cycles. Thus, this work showed that MSWI BA can be used as an OPC substitute (up to 15 v/v %) and as a filler, promoting circular economy principles and reducing CO2 emissions related to the construction industry.
PDF https://www.mdpi.com/1996-1944/16/21/6933/pdf?version=1698501371

Similar Articles

ID Score Article
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
5061 Wijesekara, DA; Sargent, P; Hughes, DJ; Ennis, CJ Sintered Bottom and Vitrified Silica Ashes Derived from Incinerated Municipal Solid Waste as Circular Economy-Friendly Partial Replacements for Cement in Mortars(2024)Waste And Biomass Valorization, 15, 5
29318 Menéndez, E; Argiz, C; Recino, H; Sanjuán, MA Characterization of Mortars Made with Coal Ashes Identified as a Way Forward to Mitigate Climate Change(2022)Crystals, 12.0, 4
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
10647 Loginova, E; Schollbach, K; Proskurnin, M; Brouwers, HJH Municipal solid waste incineration bottom ash fines: Transformation into a minor additional constituent for cements(2021)
25609 Sharifikolouei, E; Canonico, F; Salvo, M; Baino, F; Ferraris, M Vitrified and nonvitrified municipal solid wastes as ordinary Portland cement (OPC) and sand substitution in mortars(2020)International Journal Of Applied Ceramic Technology, 17, 2
6564 Borges, PM; Schiavon, JZ; da Silva, SR; Rigo, E; Neves, A; Possan, E; Andrade, JJD Mortars with recycled aggregate of construction and demolition waste: Mechanical properties and carbon uptake(2023)
15058 Seifi, S; Sebaibi, N; Levacher, D; Boutouil, M Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag(2019)
12848 Belkadi, AA; Kessal, O; Chiker, T; Achour, Y; Rouabhi, A; Messaoudi, O; Khouadjia, MLK Full Factorial Design of Mechanical and Physical Properties of Eco-mortars Containing Waste Marble Powder(2023)Arabian Journal For Science And Engineering, 48.0, 4
22180 Czop, M; Lazniewska-Piekarczyk, B Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete(2020)Materials, 13.0, 7
Scroll