Knowledge Agora



Similar Articles

Title Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel
ID_Doc 21997
Authors Emenike, EC; Iwuozor, KO; Ighalo, JO; Bamigbola, JO; Omonayin, EO; Ojo, HT; Adeleke, J; Adeniyi, AG
Title Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel
Year 2024
Published Biofuels-Uk, 15.0, 4
Abstract Biochar is a solid material that contains a lot of carbon and is created by heating biomass in an environment where there is little or no oxygen. It has become clear that biochar holds great promise for combating climate change, enhancing soil fertility, eliminating pollutants, and promoting effective waste disposal. In particular, sawdust biochar produced via thermochemical processes has drawn a lot of attention because of its affordability and abundant availability. This review paper presents a general summary of the production of sawdust biochar via thermochemical processes, including pyrolysis, hydrothermal carbonization, torrefaction, and gasification. It was observed that the specific yields and performance of these methods vary depending on the feedstock source, process parameters, and equipment used. Additionally, the properties of biochar, such as carbon content, surface area, and stability, also vary depending on the production method. The effects of operating factors on the sawdust-biochar production processes, such as temperature, heating rate, and residence duration, are also covered in the study. While challenges exist, ongoing research aims to improve biochar properties and applications, making it a valuable tool for climate-smart agriculture and sustainable land management.
PDF

Similar Articles

ID Score Article
10366 Racek, J; Chorazy, T; Miino, MC; Vrsanská, M; Brtnicky, M; Mravcová, L; Kucerík, J; Hlavínek, P Biochar production from the pyrolysis of food waste: Characterization and implications for its use(2024)
27022 Dandamudi, KPR; Murdock, T; Lammers, PJ; Deng, SG; Fini, EH Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure(2021)
29119 He, MJ; Xu, ZB; Sun, YQ; Chan, PS; Lui, I; Tsang, DCW Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar(2021)
7035 Zhu, H; An, Q; Nasir, ASM; Babin, A; Saucedo, SL; Vallenas, A; Li, LRT; Baldwin, SA; Lau, A; Bi, XT Emerging applications of biochar: A review on techno-environmental-economic aspects(2023)
3639 Dhull, SB; Rose, PK; Rani, J; Goksen, G; Bains, A Food waste to hydrochar: A potential approach towards the Sustainable Development Goals, carbon neutrality, and circular economy(2024)
14431 Stylianou, M; Christou, A; Dalias, P; Polycarpou, P; Michael, C; Agapiou, A; Papanastasiou, P; Fatta-Kassinos, D Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds(2020)Journal Of The Energy Institute, 93, 5
25454 Karmee, SK; Kumari, G; Soni, B Pilot scale oxidative fast pyrolysis of sawdust in a fluidized bed reactor: A biorefinery approach(2020)
27560 Wystalska, K; Kwarciak-Kozlowska, A The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties(2021)Materials, 14.0, 7
27593 Kumar, M; Dutta, S; You, SM; Luo, G; Zhang, SC; Show, PL; Sawarkar, AD; Singh, L; Tsang, DCW A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge(2021)
2664 Costa, JAV; Zaparoli, M; Cassuriaga, APA; Cardias, BB; Vaz, BD; de Morais, MG; Moreira, JB Biochar production from microalgae: a new sustainable approach to wastewater treatment based on a circular economy(2023)
Scroll