Knowledge Agora



Similar Articles

Title Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete
ID_Doc 22180
Authors Czop, M; Lazniewska-Piekarczyk, B
Title Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete
Year 2020
Published Materials, 13.0, 7
Abstract In Europe, the use of wastes in the cement and construction industry follows the assumptions of sustainability and the idea of circular economy. At present, it is observed that cement plants introduce wastes to the cement in the form of so-called mineral additives. The most often used mineral additives are: fly ash with silica fume, granulated blast furnace slag and silica fume. The use of mineral additives in the cement is related to the fact that the use of the most expensive component of cement-Portland cement clinker-is limited. The purpose of the article is a preliminary evaluation of the suitability of slag from the municipal solid waste incineration plant for its use as a replacement of cement. In this article, slag from the municipal solid waste incineration (MSWI) replaces cement in the quantity of 30%, and presents the content of oxides and elements of slag from the MSWI. The obtained results are compared to the requirements that the crushed and granulated blast furnace slag need to meet to be suitable for use as an additive of type II to the concrete. The conducted analyses confirmed that the tested slag meets the requirements for the granulated blast furnace slag as an additive to the concrete in the following parameters: CaO <= 18.0%, SO3 <= 2.5% and Cl <= 0.1%. At the same time, mechanical features were tested of the designed mortars which consisted of a mixture of Portland cement (CEM I) with 30% of slag admixture. The designed mortar after 28 days of maturing reached a compressive strength of 32.0 MPa, and bending strength of 4.0 MPa. When compared to the milled granulated blast furnace slag (GBFS), the obtained values are slightly lower. Furthermore, the hardened mortars were subject to a leachability test to check the impact on the environment. Test results showed that the aqueous extracts from mixtures with 30% of slag admixtures slightly exceed the limits and do not pose a sufficiant threat to the environment as to eliminate the MSWI slag from economical use.
PDF https://www.mdpi.com/1996-1944/13/7/1593/pdf?version=1585659332

Similar Articles

ID Score Article
6028 Parron-Rubio, ME; Perez-Garcia, F; Gonzalez-Herrera, A; Oliveira, MJ; Rubio-Cintas, MD Slag Substitution as a Cementing Material in Concrete: Mechanical, Physical and Environmental Properties(2019)Materials, 12, 18
5489 Czop, M; Kajda-Szczesniak, M; Zajusz-Zubek, E; Biss, W; Bochenko, A; Brzezina, L; Czech, D; Turyla, K The Role of Slag from the Combustion of Solid Municipal Waste in Circular Economy(2022)
23335 Parron-Rubio, ME; Perez-García, F; Gonzalez-Herrera, A; Rubio-Cintas, MD Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances(2018)Materials, 11, 6
15644 Nicula, LM; Manea, DL; Simedru, D; Cadar, O; Dragomir, ML; Ardelean, I; Corbu, O Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements(2023)Materials, 16, 17
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
15143 Ulewicz, M; Jura, J; Zielinski, A; Pietraszek, J The Application of Converter Sludge and Slag to Produce Ecological Cement Mortars(2024)Materials, 17, 17
15058 Seifi, S; Sebaibi, N; Levacher, D; Boutouil, M Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag(2019)
15477 Lamrani, S; El Ayadi, H; Belmokhtar, N; Ammari, M; Ben Allal, L Integration of an Industrial Waste in the Manufacturing of a Cementitious Construction Material(2022)
23188 Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources(2024)Materials, 17, 1
8743 Parron-Rubio, ME; Kissi, B; Perez-García, F; Rubio-Cintas, MD Development in Sustainable Concrete with the Replacement of Fume Dust and Slag from the Steel Industry(2022)Materials, 15.0, 17
Scroll