Knowledge Agora



Similar Articles

Title Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art
ID_Doc 22290
Authors Botelho, AB Jr; Tenório, JAS; Espinosa, DCR
Title Separation of Critical Metals by Membrane Technology under a Circular Economy Framework: A Review of the State-of-the-Art
Year 2023
Published Processes, 11.0, 4
Abstract The demand for critical metals for net-zero technologies, including electric vehicles and wind/solar energy, puts pressure on extraction and recycling processes. As the treatment of solutions is becoming more and more complex and associated with the decreasing concentration of critical metals and the concentration of contaminants increasing, the development of separation techniques is required. Among them, membrane separation has been evaluated for hydrometallurgical processes with similar results to traditional techniques. This work aimed at reviewing the literature on membrane applications to obtain critical metals-lithium (Li), cobalt (Co), and rare earth elements (scandium-Sc, yttrium-Y, lanthanum-La, and neodymium-Nd). The main novelty is that this literature review focuses on the application of membrane techniques in industrial processes, not only water and wastewater treatment. For this, we searched a scientific database for different keywords, and the bibliometric analysis demonstrated a strong linkage between membrane separation and critical metals. The application of membranes to obtain critical metals from primary and secondary sources, acid mine drainage (AMD), industrial wastes, and the recycling of electronic wastes (e-wastes) and brine was revised. Among these traditional technologies, no relation was found with reverse osmosis. The outstanding use of membranes included combinations of solvent extraction techniques, including supported liquid membranes and polymer inclusion membranes.
PDF https://www.mdpi.com/2227-9717/11/4/1256/pdf?version=1681885249

Similar Articles

ID Score Article
8574 Gebreslassie, G; Desta, HG; Dong, YC; Zheng, XY; Zhao, M; Lin, B Advanced membrane-based high-value metal recovery from wastewater(2024)
27339 López, J; Gibert, O; Cortina, JL Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview(2021)
9929 Iulianelli, A; Drioli, E Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications(2020)
33556 Sun, Z; Cao, H; Xiao, Y; Sietsma, J; Jin, W; Agterhuis, H; Yang, Y Toward Sustainability for Recovery of Critical Metals from Electronic Waste: The Hydrochemistry Processes(2017)Acs Sustainable Chemistry & Engineering, 5.0, 1
6547 Moreira, VR; Castro, LMC; Balarini, JC; Santos, TLM; Amaral, MCS Recovering and reusing water, H2SO4, nickel and cobalt from gold mining wastewater using air-gap membrane distillation and solvent extraction(2024)
22595 Santoro, S; Estay, H; Avci, AH; Pugliese, L; Ruby-Figueroa, R; Garcia, A; Aquino, M; Nasirov, S; Straface, S; Curcio, E Membrane technology for a sustainable copper mining industry: The Chilean paradigm(2021)
27016 Moreira, VR; Torres, EA; Balarini, JC; Amaral, MCS Rethinking gold mining wastewater treatment with an integrated process of membrane distillation and membrane contactors for minimal waste discard and resource recovery(2023)
26394 Butylskii, DY; Troitskiy, VA; Smirnova, NV; Pismenskaya, ND; Wang, Y; Jiang, C; Xu, T; Nikonenko, VV Review of recent progress on lithium recovery and recycling from primary and secondary sources with membrane-based technologies(2024)
16020 Siekierka, A; Calahan, DL; Kujawski, W; Dumée, LF Ultra-selective chelating membranes for recycling of cobalt from lithium-ion spent battery effluents by electrodialysis(2023)
9369 Baena-Moreno, FM; Rodríguez-Galán, M; Arroyo-Torralvo, F; Vilches, LF Low-Energy Method for Water-Mineral Recovery from Acid Mine Drainage Based on Membrane Technology: Evaluation of Inorganic Salts as Draw Solutions(2020)Environmental Science & Technology, 54.0, 17
Scroll