Knowledge Agora



Similar Articles

Title Push-out tests on demountable shear connectors of steel-concrete composite structures
ID_Doc 22373
Authors Kozma, A; Odenbreit, C; Braun, MV; Veljkovic, M; Nijgh, MP
Title Push-out tests on demountable shear connectors of steel-concrete composite structures
Year 2019
Published
Abstract Circular Economy refers to a move from linear business models, in which products are manufactured from raw materials, used and then discarded, to circular business models where products or parts are re-used, remanufactured or recycled. Structural steel is highly compatible with this concept; however, when steel-concrete composite structures are used, recycling becomes difficult and the potential for reuse is lost. In order to make steel-concrete composite structures reusable, bolted connections should replace the commonly used welded headed studs. Furthermore, the reusable parts should be designed to withstand repeated use. This paper presents a desktop study and the corresponding laboratory experiments on demountable shear connectors that facilitate recyclability and even provide the potential for reusing complete structural elements. In the Laboratory of Steel and Composite Structures of the University of Luxembourg 15 push-out tests have been carried out using different bolted connection systems suitable for multiple use. The shear connectors have been evaluated based on their shear strength, stiffness, slip capacity, ductility and ability of demounting. The investigated systems included pre-stressed and epoxy resin injection bolts, solid slabs and solid slabs in combination with profiled steel sheeting. The results showed that the tested demountable shear connections could provide higher shear resistance than conventional shear connections. The critical failure mode was the shear failure of the bolts, which is a brittle failure. There was no visible damage observed on the connected members. The application of epoxy resin in the hole clearance resulted in lower slip capacity. The outcome provides an important basis for the justification of the forthcoming enhancement and validation of numerical models of the demountable shear connections. The failure behaviour, the observed damages and the resulting ability of the elements for re-use are discussed in detail.
PDF

Similar Articles

ID Score Article
6653 Kozma, A; Odenbreit, C; Braun, MV; Veljkovic, M; Nijgh, MP Push-out tests on demountable shear connectors of steel-concrete composite structures(2018)
21060 Kozma, A; Odenbreit, C; Braun, MV Characterisation Of Demountable Shear Connector Systems In Composite Beams(2019)
12691 Király, K; Dunai, L Experimental Study of Novel Demountable Shear Connectors for Steel-concrete Composite Buildings(2024)Periodica Polytechnica-Civil Engineering, 68.0, 2
4351 Lam, D; Dai, XH; Ashour, AF; Rehman, N Composite Structures In The Circular Economy(2016)
25804 Mansilla, R; Espinos, A; Odenbreit, C; Paya-Zaforteza, I; Romero, ML Characterization of the elevated temperature behaviour of demountable shear connectors in steel-concrete composite beams through push-out tests(2024)
14973 Nijgh, MP; Gîrbacea, IA; Veljkovic, M Elastic behaviour of a tapered steel-concrete composite beam optimized for reuse(2019)
63897 Kavoura, F; Christoforidou, A; Pavlovic, M; Veljkovic, M Mechanical properties of demountable shear connectors under different confined conditions for reusable hybrid decks(2022)Steel And Composite Structures, 43, 4
6823 Lam, D; Dai, XH; Ashour, A; Rahman, N Recent research on composite beams with demountable shear connectors(2017)Steel Construction-Design And Research, 10, 2
15546 Nijgh, MP; Veljkovic, M Requirements for oversized holes for reusable steel-concrete composite floor systems(2020)
7239 Milicevic, I; Milosavljevic, B; Spremic, M; Mandic, R; Popovic, M Local behaviour of the connector with mechanical coupler and rebar anchor under tension load(2023)Gradevnski Materijiali I Konstrukcije-Building Materials And Structures, 66, 2
Scroll