Knowledge Agora



Similar Articles

Title An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis-A Technical Report
ID_Doc 22395
Authors Chasioti, A; Zabaniotou, A
Title An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis-A Technical Report
Year 2024
Published Sustainability, 16.0, 14
Abstract Recycling plastics on an industrial scale is a key approach to the circular economy. This study presents a techno-economic analysis aimed at recycling polypropylene waste, one of the main consumer plastics. Specifically, it evaluates the technical and economic feasibility of achieving a large-scale cracking process that converts polypropylene waste into an alternative fuel. Pyrolysis is considered as a promising technique to convert plastic waste into liquid oil and other value-added products, with a dual benefit of recovering resources and providing a zero-waste solution. This study concerns a fast catalytic pyrolysis in a fluidized bed reactor, with the presence of a fluid catalytic cracking catalyst of low acidity for high heat transmission, for an industrial plant with a capacity of 1 t/h of polypropylene waste provided by the Greek Petroleum Industry. From the international literature, the operational conditions were chosen pyrolysis temperature at 430 degrees C, pressure at 1atm, heating rate at 5 degrees C/min, and yields of products to 71, 14, and 15 wt.%, for liquid fuel, gas, solid product, respectively. The plant design includes a series of apparatuses, with the main one to be the pyrolyzer. The catalytic method is selected over the non-catalytic because the presence of catalyst increases the quantity and quality of the liquid product, which is the main product of the plant. The energy loops of recycling pyrolysis gas and char as a low-carbon fuel in the plant were considered. The production cost, annual revenue, for 2023, are anticipated to reach 13.7 million (115 /t) and 15 million (15 /t), respectively, with an estimated investment equal to 5.3 million. The Payback Time is estimated to 2.4 years to recover the cost of investment. The endeavor is rather economically sustainable. A critical parameter for large scale systems is securing feedstock with low or negligible price.
PDF https://doi.org/10.3390/su16145852

Similar Articles

ID Score Article
28294 Zabaniotou, A; Vaskalis, I Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis(2023)Energies, 16.0, 2
23649 Laghezza, M; Fiore, S; Berruti, F A review on the pyrolytic conversion of plastic waste into fuels and chemicals(2024)
3665 Bora, RR; Wang, R; You, FQ Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives(2020)Acs Sustainable Chemistry & Engineering, 8, 43
2150 Sakthipriya, N Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis(2022)
29061 Biakhmetov, B; Dostiyarov, A; Ok, YS; You, SM A review on catalytic pyrolysis of municipal plastic waste(2023)Wiley Interdisciplinary Reviews-Energy And Environment, 12.0, 6
24647 Qureshi, MS; Oasmaa, A; Pihkola, H; Deviatkin, I; Tenhunen, A; Mannila, J; Minkkinen, H; Pohjakallio, M; Laine-Ylijoki, J Pyrolysis of plastic waste: Opportunities and challenges(2020)
14085 Shan, TL; Wang, KS; Li, Y; Gong, Z; Wang, CS; Tian, XL Study on the kinetics of catalytic pyrolysis of single and mixed waste plastics by spent FCC catalyst(2024)Journal Of Thermal Analysis And Calorimetry, 149, 4
26791 Cuevas, AB; Leiva-Candia, DE; Dorado, MP An Overview of Pyrolysis as Waste Treatment to Produce Eco-Energy(2024)Energies, 17, 12
12454 Peng, YJ; Wang, YP; Ke, LY; Dai, LL; Wu, QH; Cobb, K; Zeng, Y; Zou, RG; Liu, YH; Ruan, RG A review on catalytic pyrolysis of plastic wastes to high-value products(2022)
27860 Urciuolo, M; Migliaccio, R; Chirone, R; Bareschino, P; Mancusi, E; Pepe, F; Ruoppolo, G Thermal and Catalytic Pyrolysis of Real Plastic Solid Waste as a Sustainable Strategy for Circular Economy(2023)Combustion Science And Technology, 195.0, 14
Scroll