Knowledge Agora



Similar Articles

Title Microwave Fast Sintering Production of Sustainable Lightweight Aggregates with Agroindustrial Waste
ID_Doc 22500
Authors Lyra, GP; De Santis, BC; Santos, V; Pallone, EMDA; Kiminami, RHGA; Rossignolo, JA
Title Microwave Fast Sintering Production of Sustainable Lightweight Aggregates with Agroindustrial Waste
Year 2022
Published Journal Of Materials In Civil Engineering, 34.0, 8
Abstract This study aims at analyzing the influence of agroindustrial waste incorporation into red ceramics to produce lightweight aggregates sintered in a microwave oven. Sustainable artificial lightweight aggregates are sought out, particularly in the context of a circular economy. At first, red clay, sugarcane bagasse ash, and rice husk ash were characterized by means of X-ray fluorescence, loss on ignition, X-ray diffraction, grain sizing, true specific mass, and thermal gravimetric analysis. Three different ceramic masses were extruded: the reference, with no added waste; clay with 40% sugarcane bagasse ash; and clay with 40% rice husk ash. All samples were presintered in a conventional oven at 600 degrees C for 60 min. Conventional sintering occurred at temperatures between 700 degrees C and 1,100 degrees C at a 10 degrees C/min heating rate. Microwave sintering occurred for 5, 10, and 15 min, at a 50 degrees C/min heating rate in a chamber coated with silicon carbide (susceptor). After sintering, specimens were characterized regarding linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, and scanning electron microscopy. Results showed that microwave sintering increased compressive strength, decreased water absorption, and provided microstructure refinement. The addition of waste reduced specimens' specific mass after sintering. Sugarcane bagasse ash-added red ceramic specimens sintered in a microwave oven yielded values close to those of Brazilian expanded clay, thus appearing as an alternative for production of more sustainable lightweight aggregates, in view of greater agroindustrial waste utilization and lower energetic consumption during the sintering process. (C) 2022 American Society of Civil Engineers.
PDF

Similar Articles

ID Score Article
27626 Fernandes, FAD; Fernandes, TFD; Rossignolo, JA Production of Glass Foam in a Microwave Oven Using Agro-Industrial Waste as Raw Material(2024)Buildings, 14.0, 6
10267 Karayannis, VG; Moutsatsou, AK; Baklavaridis, AN; Katsika, EL; Domopoulou, AE Synergistic Sintering of Lignite Fly Ash and Steelmaking Residues towards Sustainable Compacted Ceramics(2017)
26130 Farias, RD; García, CM; Palomino, TC; Andreola, F; Lancellotti, I; Barbieri, L Valorization Of Agro-Industrial Wastes In Lightweight Aggregates For Agronomic Use: Preliminary Study(2017)Environmental Engineering And Management Journal, 16, 8
Scroll