Knowledge Agora



Similar Articles

Title Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation
ID_Doc 22619
Authors De Groof, V; Coma, M; Arnot, T; Leak, DJ; Lanham, AB
Title Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation
Year 2019
Published Molecules, 24.0, 3
Abstract Environmental pressures caused by population growth and consumerism require the development of resource recovery from waste, hence a circular economy approach. The production of chemicals and fuels from organic waste using mixed microbial cultures (MMC) has become promising. MMC use the synergy of bio-catalytic activities from different microorganisms to transform complex organic feedstock, such as by-products from food production and food waste. In the absence of oxygen, the feedstock can be converted into biogas through the established anaerobic digestion (AD) approach. The potential of MMC has shifted to production of intermediate AD compounds as precursors for renewable chemicals. A particular set of anaerobic pathways in MMC fermentation, known as chain elongation, can occur under specific conditions producing medium chain carboxylic acids (MCCAs) with higher value than biogas and broader applicability. This review introduces the chain elongation pathway and other bio-reactions occurring during MMC fermentation. We present an overview of the complex feedstocks used, and pinpoint the main operational parameters for MCCAs production such as temperature, pH, loading rates, inoculum, head space composition, and reactor design. The review evaluates the key findings of MCCA production using MMC, and concludes by identifying critical research targets to drive forward this promising technology as a valorisation method for complex organic waste.
PDF https://www.mdpi.com/1420-3049/24/3/398/pdf?version=1548428616

Similar Articles

ID Score Article
13909 Zhang, WQ; Wang, SL; Yin, FB; Cao, QT; Lian, TJ; Zhang, HY; Zhu, ZP; Dong, HM Medium-chain carboxylates production from co-fermentation of swine manure and corn stalk silage via lactic acid: Without external electron donors(2022)
10939 Tomás-Pejó, E; González-Fernández, C; Greses, S; Kennes, C; Otero-Logilde, N; Veiga, MC; Bolzonella, D; Müller, B; Passoth, V Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals(2023)Biotechnology For Biofuels And Bioproducts, 16, 1
13035 Zhang, WQ; Wang, SL; Yin, FB; Dong, HM; Cao, QT; Lian, TJ; Zhu, J Produce individual medium chain carboxylic acids (MCCA) from swine manure: Performance evaluation and economic analysis(2022)
28526 Ewing, TA; Nouse, N; van Lint, M; van Haveren, J; Hugenholtz, J; van Es, DS Fermentation for the production of biobased chemicals in a circular economy: a perspective for the period 2022-2050(2022)Green Chemistry, 24.0, 17
9327 Menzel, T; Neubauer, P; Junne, S Role of Microbial Hydrolysis in Anaerobic Digestion(2020)Energies, 13.0, 21
5284 Dahiya, S; Lingam, Y; Mohan, SV Understanding acidogenesis towards green hydrogen and volatile fatty acid production-Critical analysis and circular economy perspective(2023)
13482 Vazquez-Fernandez, A; Suarez-Ojeda, ME; Carrera, J Review about bioproduction of Volatile Fatty Acids from wastes and wastewaters: Influence of operating conditions and organic composition of the substrate(2022)Journal Of Environmental Chemical Engineering, 10, 3
64523 Gazzola, G; Braguglia, CM; Crognale, S; Gallipoli, A; Mininni, G; Piemonte, V; Rossetti, S; Tonanzi, B; Gianico, A Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition(2022)
14041 Fernández-Blanco, C; Veiga, MC; Kennes, C Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri(2022)
5231 Pavan, M; Reinmets, K; Garg, S; Mueller, AP; Marcellin, E; Köpke, M; Valgepea, K Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy(2022)
Scroll