Knowledge Agora



Similar Articles

Title Physical Properties of Eco-Sustainable Form-Stable Phase Change Materials Included in Mortars Suitable for Buildings Located in Different Continental Regions
ID_Doc 22675
Authors Sarcinella, A; de Aguiar, JLB; Frigione, M
Title Physical Properties of Eco-Sustainable Form-Stable Phase Change Materials Included in Mortars Suitable for Buildings Located in Different Continental Regions
Year 2022
Published Materials, 15.0, 7
Abstract Starting from two low-cost, low-environmental-impact polymers belonging to the Polyethylene Glycol (PEG) family, i.e., PEG 800 and PEG 1000, two form-stable phase change materials were produced. The two PEGs differ in molecular weight and, as a consequence, the melting and crystallization range of temperatures. The PCMs were obtained, including the PEG, in a liquid state, inside the pores of Lecce Stone flakes, obtained as waste pieces from its processing. A simple and inexpensive impregnation process was selected to produce the PCMs, thus adopting low-environmental-impact materials and cheap processes, and respecting circular economy principles. The two PCMs, the first composed of PEG 800, namely LS/PEG800, and the second composed of a 50/50%wt. mix of the different LS/PEGs, i.e., LS/PEG800_LS/PEG1000, were added as aggregates to four types of mortars, based on aerial and hydraulic lime, gypsum, and cement. The obtained mortars were characterized in their fresh state to assess their workability, and in a solid state after a proper cure to determine their characteristic Latent Heat Thermal Energy Storage (LHTES) properties and mechanical properties in both flexural and compressive modes, taking the mortars not containing any PCM as the reference. The results revealed that, with the proper selection of mortar formulations, it was possible to achieve suitable workability and adequate mechanical characteristics. The selection of a PEG with a low range of phase change temperatures, such as PEG 800, allows one to obtain mortars characterized by a melting/crystallization range that can be considered appropriate in applications characterized by cold climates. The production of a mixed PCM, composed of both PEGs, led to mortars displaying a large interval of melting/crystallization temperatures, which could be suitable in both warm and cold climates.
PDF https://www.mdpi.com/1996-1944/15/7/2497/pdf?version=1648472020

Similar Articles

ID Score Article
22737 Frigione, M; Sarcinella, A; de Aguiar, JLB Development and Performance of Eco-Sustainable Form-Stable Phase Change Materials (PCMs) for Mortars to Be Applied in Buildings Located in Different Climatic Areas(2023)Coatings, 13.0, 2
21944 Sarcinella, A; Aguiar, JLBD; Frigione, M Physical Properties of an Eco-Sustainable, Form-Stable Phase Change Material Included in Aerial-Lime-Based Mortar Intended for Different Climates(2022)Materials, 15.0, 3
8865 Sarcinella, A; de Aguiar, JLB; Jesus, C; Frigione, M Thermal properties of PEG-based form-stable Phase Change Materials (PCMs) incorporated in mortars for energy efficiency of buildings(2023)
8899 Cunha, S; Sarcinella, A; Reis, N; Aguiar, J; Frigione, M High temperature performance of cement mortars with incorporation of PEG-based form-stable Phase Change Materials(2024)
15725 Díaz-Perete, D; Hermoso-Orzáez, MJ; Terrados-Cepeda, J; Silva-Romano, P; Martin-Doñate, C WEEE polymers valorization, its use as fuel in the gasification process and revaluation of the inert by-products obtained: Sustainable mortars as a solution(2023)Heliyon, 9, 9
12174 Todaro, F; Petrella, A; Santomasi, G; De Gisi, S; Notarnicola, M Environmental Sustainable Cement Mortars Based on Polyethylene Terephthalate from Recycling Operations(2023)Materials, 16.0, 5
17632 Orsini, F; Marrone, P; Santini, S; Sguerri, L; Asdrubali, F; Baldinelli, G; Bianchi, F; Presciutti, A Smart Materials: Cementitious Mortars and PCM Mechanical and Thermal Characterization(2021)Materials, 14, 15
28375 La Scalia, G; Saeli, M; Adelfio, L; Micale, R From lab to industry: Scaling up green geopolymeric mortars manufacturing towards circular economy(2021)
21822 Ulas, MA; Culcu, MB; Ulucan, M Valorization of recycled aggregates to eco-efficient lightweight self-compacting mortars: Studies on microstructure, mechanical, durability, environmental, and economic properties(2024)
8004 Ferrandez, D; Yedra, E; Moron, C; Zaragoza, A; Kosior-Kazberuk, M Circular Building Process: Reuse of Insulators from Construction and Demolition Waste to Produce Lime Mortars(2022)Buildings, 12, 2
Scroll