Knowledge Agora



Similar Articles

Title Integrated analytical hierarchy process-grey relational analysis approach for mechanical recycling scenarios of plastics waste in India
ID_Doc 22754
Authors Sharma, R; Pardeshi, S; Joseph, J; Khan, D; Chelani, A; Dhodapkar, R
Title Integrated analytical hierarchy process-grey relational analysis approach for mechanical recycling scenarios of plastics waste in India
Year 2024
Published
Abstract Mechanical recycling is an indispensable tool for plastic waste (PW) recycling and has the highest share in the PW recycling sector in India. The transition to the circular economy of plastics (CEoP) needs a systemic perspective on the mechanical recycling processes. Nevertheless, the assessment of multiple parameters influencing the mechanical recycling of PW is a complex decision-making problem for the development of triple-bottom-line mechanical recycling. A systemic perspective of various mechanical recycling scenarios was performed by employing a multi-criteria decision-making approach to examine the complexity of interlinked factors in the present investigation. Analytical hierarchy process (AHP) integrated with grey relational analysis (GRA) was used to evaluate the criteria that directly influence quality-oriented mechanical recycling. Data were collected by conducting semi-structured interviews using a framed questionnaire in stakeholder engagement with mechanical recyclers of PW. The first level hierarchy included economy, technical, resource consumption and environmental criteria. These criteria were further categorized into various significant indices such as quality of recyclate, recyclability, water and energy consumption during recycling. The results of the integrated grey relational analysis indicated that the technical parameters including quality of recyclate, resource efficiency, PW processing rate and recyclability have a significant influence on mechanical recycling. Based on AHP-GRA, scenario MR6, i.e. manufacturing of PET strap from recycled PET flakes, was ranked the optimal mechanical process amongst the various scenarios. MR6 was followed by Straps and Films at the second and third rank. The lowest ranking was observed for polymer blend recycling. These processes with higher ranks produced good quality recyclate with better efficiency and recyclability. Moreover, these processes consumed optimal resources during manufacturing. These processes also exhibited less maintenance cost, high production rate, low chemical consumption and waste generation as well as implemented pollution control practices.
PDF

Similar Articles

ID Score Article
3351 Pardeshi, S; Sharma, R; Shanker, R; Joseph, J; Khan, D; Vaidya, A; Dhodapkar, R Mechanical recycling scenarios in India through the lens of plastic circular economy(2023)Journal Of Material Cycles And Waste Management, 25, 6
27714 Golkaram, M; Mehta, R; Taveau, M; Schwarz, A; Gankema, H; Urbanus, JH; De Simon, L; Cakir-Benthem, S; van Harmelen, T Quality model for recycled plastics (QMRP): An indicator for holistic and consistent quality assessment of recycled plastics using product functionality and material properties(2022)
24955 Faraca, G; Astrup, T Plastic waste from recycling centres: Characterisation and evaluation of plastic recyclability(2019)
6360 Lee, MY; Cho, NH; Lee, SJ; Um, N; Jeon, TW; Kang, YY Application of material flow analysis for plastic waste management in the Republic of Korea(2021)
5644 Olatayo, KI; Mativenga, PT; Marnewick, AL Plastic value chain and performance metric framework for optimal recycling(2023)Journal Of Industrial Ecology, 27, 2
10885 Bui, TD; Tseng, JW; Tseng, ML; Lim, MK Opportunities and challenges for solid waste reuse and recycling in emerging economies: A hybrid analysis(2022)
25707 Venkatachalam, V; Spierling, S; Endres, HJ Recyclable, but not recycled-an indicator to quantify the environmental impacts of plastic waste disposal(2024)
4615 Venkatachalam, V; Pohler, M; Spierling, S; Nickel, L; Barner, L; Endres, HJ Design for Recycling Strategies Based on the Life Cycle Assessment and End of Life Options of Plastics in a Circular Economy(2022)Macromolecular Chemistry And Physics, 223, 13
15501 Flizikowski, J; Kruszelnicka, W; Macko, M The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes(2021)Polymers, 13, 5
5889 Wiah, EN; Addor, JA; Alao, FI Transitional probabilities for plastic waste management and implication on sustainability(2022)Sustainable Environment, 8, 1
Scroll