Knowledge Agora



Similar Articles

Title Enhancing the environmental and economic sustainability of heterotrophic microalgae cultivation: Kinetic modelling and screening of alternative carbon sources
ID_Doc 22779
Authors Rossi, S; Carecci, D; Proietti, L; Parati, K; Ficara, E
Title Enhancing the environmental and economic sustainability of heterotrophic microalgae cultivation: Kinetic modelling and screening of alternative carbon sources
Year 2024
Published
Abstract Heterotrophic microalgae cultivation has been suggested to reduce conventional photo-autotrophic microalgal biomass production costs. In heterotrophic cultivation, the most relevant operational costs are constituted by the supply of pure substrates used as carbon source (e.g., glucose), and the high energy request for culture aeration. In addition, suboptimal conditions of temperature and pH reduce the algal productivity, further increasing production costs. In this work, an attempt was made to define more sustainable and cost-effective strategies for the heterotrophic cultivation of Chlorellaceae and Scenedesmaceae. Several by-products from a local confectionery industry were thus screened as alternative carbon sources. Manufacturing residues from peppermint and liquorice candies production allowed to achieve comparable maximum growth rates (1.44 d-1), biomass yields (0.33 g COD & sdot;g COD-1) and biomass productivities (370 mg COD & sdot;L-1 & sdot;d(-1)) as those achieved using glucose. A preliminary economic evaluation showed that the operational costs could be lowered of up to 85.6% by substituting glucose with the selected industrial by-products. As for fermentation conditions, high growth rates could be maintained at relatively low dissolved oxygen (DO) concentrations, and in a large range of temperature and pH values. In addition, optimal temperatures (37.0 - 37.2(degrees)C), pH values (6.8 - 7.4), and DO concentrations (> 0.5 - 1 mg O-2 & sdot;L-1) were identified. On the overall, the study demonstrated the possibility of achieving the reduction of operational costs for heterotrophic microalgae cultivation, while implementing circular economy principles in the framework of resource recovery during the bioremediation of organic waste.
PDF https://doi.org/10.1016/j.ceja.2024.100632

Similar Articles

ID Score Article
24747 Sarma, S; Sharma, S; Rudakiya, D; Upadhyay, J; Rathod, V; Patel, A; Narra, M Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery(2021)3 Biotech, 11, 8
14531 Wimmerova, L; Keken, Z; Solcova, O; Vavrova, K A Comparative Analysis of Environmental Impacts of Operational Phases of Three Selected Microalgal Cultivation Systems(2023)Sustainability, 15, 1
20044 Angelini, F; Bellini, E; Marchetti, A; Salvatori, G; Villano, M; Pontiggia, D; Ferrari, S Efficient utilization of monosaccharides from agri-food byproducts supports Chlorella vulgaris biomass production under mixotrophic conditions(2024)
15119 Plöhn, M; Scherer, K; Stagge, S; Jönsson, LJ; Funk, C Utilization of Different Carbon Sources by Nordic Microalgae Grown Under Mixotrophic Conditions(2022)
1801 Giwa, A; Abuhantash, F; Chalermthai, B; Taher, H Bio-Based Circular Economy and Polygeneration in Microalgal Production from Food Wastes: A Concise Review(2022)Sustainability, 14, 17
20109 Wang, X; Qin, ZH; Hao, TB; Ye, GB; Mou, JH; Balamurugan, S; Bin, XY; Buhagiar, J; Wang, HM; Lin, CSK; Yang, WD; Li, HY A combined light regime and carbon supply regulation strategy for microalgae-based sugar industry wastewater treatment and low-carbon biofuel production to realise a circular economy(2022)
14726 Ljumovic, K; Betterle, N; Baietta, A; Ballottari, M Valorization of wastewater from industrial hydroponic cultivations using the microalgal species Chlorella vulgaris(2024)
24111 Marques, F; Pereira, F; Machado, L; Martins, JT; Pereira, RN; Costa, MM; Genisheva, Z; Pereira, H; Vicente, AA; Teixeira, JA; Geada, P Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate(2024)Foods, 13, 7
20295 Hoang, AT; Sirohi, R; Pandey, A; Nizetic, S; Lam, SS; Chen, WH; Luque, R; Thomas, S; Arici, M; Pham, VV Biofuel production from microalgae: challenges and chances(2023)Phytochemistry Reviews, 22, 4
10717 Sharma, S; Show, PL; Aminabhavi, TM; Sevda, S; Garlapati, VK Valorization of environmental-burden waste towards microalgal metabolites production(2023)
Scroll