Knowledge Agora



Similar Articles

Title The recycling potential of wood waste into wood-wool/cement composite
ID_Doc 23046
Authors Berger, F; Gauvin, F; Brouwers, HJH
Title The recycling potential of wood waste into wood-wool/cement composite
Year 2020
Published
Abstract Nowadays, the recycling potential of wood waste is still limited and in a resource cascading approach, recycling wood waste in cement composite materials, such as wood wool cement board (WWCB) appears as a promising solution. The quality of the wood waste is the main factor leading to the instability of the final product which can affect the mechanical properties or the wood cement compatibility. However, the possibility to recycle wood waste as a spruce replacement for WWCB manufacture needs more investigation in order to assess the impact of wood waste on the mechanical performances of the final product, but also to characterize the behavior of hazardous substances embodied in a cement matrix. This paper addresses the characterization of two types of wood waste, from pallets and demolition waste and their influence on the manufacturing process, mechanical properties and chemical compatibility when used in WWCB. A comprehensive approach is provided to define the influence of wood waste on the hydration reaction of the cement and the chemical and physical properties of the composite are assessed by isothermal calorimetry, leaching measurement and microscopy. Finally, the mechanical properties of WWCB are tested for different wood waste content in order to define the best wood/wood waste ratio and thereby confirming the possibility to reuse the wood waste in fiber/cement composite for building application. (C) 2020 The Author(s). Published by Elsevier Ltd.
PDF https://doi.org/10.1016/j.conbuildmat.2020.119786

Similar Articles

ID Score Article
9394 Dias, S; Tadeu, A; Almeida, J; Humbert, P; António, J; de Brito, J; Pinhao, P Physical, Mechanical, and Durability Properties of Concrete Containing Wood Chips and Sawdust: An Experimental Approach(2022)Buildings, 12.0, 8
10087 Liikanen, M; Grönman, K; Deviatkin, I; Havukäinen, J; Hyvärinen, M; Karki, T; Varis, J; Soukka, R; Horttanainen, M Construction and demolition waste as a raw material for wood polymer composites - Assessment of environmental impacts(2019)
14147 Ramesh, M; Rajeshkumar, L; Sasikala, G; Balaji, D; Saravanakumar, A; Bhuvaneswari, V; Bhoopathi, R A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects(2022)Polymers, 14, 3
5817 Czarnecka-Komorowska, D; Wachowiak, D; Gizelski, K; Kanciak, W; Ondrusova, D; Pajtasová, M Sustainable Composites Containing Post-Production Wood Waste as a Key Element of the Circular Economy: Processing and Physicochemical Properties(2024)Sustainability, 16, 4
6657 Argalis, PP; Sinka, M; Andzs, M; Korjakins, A; Bajare, D Development of New Bio-Based Building Materials by Utilising Manufacturing Waste(2024)Environmental And Climate Technologies, 28, 1
13397 Shih, YF; Chang, CW; Hsu, TH; Dai, WY Application of Sustainable Wood-Plastic Composites in Energy-Efficient Construction(2024)Buildings, 14, 4
15794 Kremensas, A; Kairyte, A; Vaitkus, S; Vejelis, S; Balciunas, G; Strakowska, A; Czlonka, S Mechanical performance of biodegradable hemp shivs and corn starch-based biocomposite boards(2019)
25015 Faraca, G; Boldrin, A; Astrup, T Resource quality of wood waste: The importance of physical and chemical impurities in wood waste for recycling(2019)
8443 Hou, JF; Jin, YM; Che, WB; Yu, YM Value-added utilization of wood processing residues into cement-bonded particleboards with admirable integrated performance(2022)
7120 Basalp, D; Tihminlioglu, F; Sofuoglu, SC; Inal, F; Sofuoglu, A Utilization of Municipal Plastic and Wood Waste in Industrial Manufacturing of Wood Plastic Composites(2020)Waste And Biomass Valorization, 11, 10
Scroll