Knowledge Agora



Similar Articles

Title Assessing the Techno-Economic Feasibility of Waste Electric and Electronic Equipment Treatment Plant: A Multi-Decisional Modeling Approach
ID_Doc 23096
Authors Cottes, M; Mainardis, M; Simeoni, P
Title Assessing the Techno-Economic Feasibility of Waste Electric and Electronic Equipment Treatment Plant: A Multi-Decisional Modeling Approach
Year 2023
Published Sustainability, 15, 23
Abstract Nowadays, sustainable approaches to waste management are becoming critical, due to increased generation and complex physicochemical composition. Waste electric and electronic equipment (WEEE) management, in particular, is being given increasing attention due to the continuous augment in electronic equipment usage and the limited recycling rates. In this work, a multi-objective engineering optimization approach using a decision support system (DSS) was used to analyze the feasibility of installing a WEEE treatment plant in the Friuli-Venezia Giulia region (Northeastern Italy), considering that most of the produced WEEE is currently exported outside the region. Meaningful economic and environmental parameters were considered in the assessment, together with current WEEE production and composition. Plant investment cost was in the range of EUR 7-35 M for a potentiality of 8000-40,000 ton of treated WEEE/yr, the lower bound corresponding to the WEEE produced in the region. Payback time was 4.3-10 yr, strongly depending on the market's economic conditions as well as on plant potentiality. Proper public subsidies should be provided for a plant treating only the locally produced WEEE, establishing a circular economy. The fraction of recovered materials was 78-83%, fulfilling the current EU legislative requirements of 80% and stabilizing around values of 80% for a higher washing machine fraction. An increase in personal computers may allow to augment the economic revenues, due to the high conferral fees, while it reduces the amounts of recovered materials, due to their complex composition. CO2 emission reduction thanks to material recovery was in the range of 8000-38,000 ton CO2/yr, linearly depending on the plant potentiality. The developed DSS system could be used both by public authorities and private companies to preliminarily evaluate the most important technical, financial and environmental aspects to assess overall plant sustainability. The proposed approach can be exported to different locations and integrated with energy recovery (i.e., incineration of the non-recoverable fractions), analyzing both environmental and economic aspects flexibly.
PDF

Similar Articles

ID Score Article
17402 Gavrilescu, D; Enache, ASO; Ibanescu, D; Teodosiu, C; Fiore, S Sustainability assessment of waste electric and electronic equipment management systems: Development and validation of the SUSTWEEE methodology(2021)
16787 Ghisellini, P; Passaro, R; Ulgiati, S Environmental and Social Life Cycle Assessment of Waste Electrical and Electronic Equipment Management in Italy According to EU Directives(2023)Environments, 10, 7
22661 Colangelo, G; Facchini, F; Ranieri, L; Starace, G; Vitti, M Assessment of carbon emissions' effects on the investments in conventional and innovative waste-to-energy treatments(2023)
2619 Neto, JFD; Candido, LA; Dourado, ABD; Santos, SM; Florencio, L Waste of electrical and electronic equipment management from the perspective of a circular economy: A Review(2023)Waste Management & Research, 41, 4
15580 Unger, N; Beigl, P; Höggerl, G; Salhofer, S The greenhouse gas benefit of recycling waste electrical and electronic equipment above the legal minimum requirement: An Austrian LCA case study(2017)
18916 Ghiga, SC; Simion, IM; Filote, C; Rosca, M; Hlihor, RM; Gavrilescu, M Comparative Analysis of Three WEEE Management Scenarios Based on LCA Methodology: Case Study in the Municipality of Iasi, Romania(2023)Processes, 11.0, 5
5725 Ghisellini, P; Quinto, I; Passaro, R; Ulgiati, S Circular Economy Management of Waste Electrical and Electronic Equipment (WEEE) in Italian Urban Systems: Comparison and Perspectives(2023)Sustainability, 15, 11
12286 Cucchiella, F; D'Adamo, I; Koh, SCL; Rosa, P Recycling of WEEEs: An economic assessment of present and future e-waste streams(2015)
22458 Pluskal, J; Somplák, R; Nevrly, V; Smejkalová, V; Pavlas, M Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities(2021)
13193 Al-Khatib, LA; Fraige, FY The Potential Material Flow of WEEE in a Data-Constrained Environment-The Case of Jordan(2024)Recycling, 9, 1
Scroll