Knowledge Agora



Similar Articles

Title Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation
ID_Doc 23144
Authors Pienkoss, F; Abis, M; Bruno, M; Grönholm, R; Hoppe, M; Kuchta, K; Fiore, S; Simon, FG
Title Heavy metal recovery from the fine fraction of solid waste incineration bottom ash by wet density separation
Year 2022
Published Journal Of Material Cycles And Waste Management, 24, 1
Abstract This work is aimed at exploring the recovery of heavy metals from the fine fraction of solid waste incineration bottom ash. For this study, wet-discharged bottom ash fine-fraction samples from full-scale treatment plants in Germany and Sweden were analyzed. The potential for the recovery of heavy metal compounds was investigated through wet density-separation with a shaking table. The feed materials were processed without any pre-treatment and the optimum processing conditions were determined by means of design of experiments. Tilt angle and stroke frequency were identified as the most relevant parameters, and the optimum settings were - 7.5 degrees and 266 rpm, respectively. The obtained balanced copper enrichments (and yields) were 4.4 (41%), 6.2 (28%) and 2.4 (23%). A maximum copper enrichment of 14.5 with 2% yield was achieved, providing a concentrate containing 35.9 wt.% relevant heavy metal elements. This included 26.3 wt.% iron, 4.3 wt.% zinc and 3.8 wt.% copper. In conclusion, density separation with shaking tables can recover heavy metals from bottom ash fine fractions. Medium levels of heavy metal enrichment (e.g., for Cu 2.7-4.4) and yield (Cu: 26-41%) can be reached simultaneously. However, the separation performance also depends on the individual bottom ash sample.
PDF

Similar Articles

ID Score Article
19409 Syc, M; Simon, FG; Hyks, J; Braga, R; Biganzoli, L; Costa, G; Funari, V; Grosso, M Metal recovery from incineration bottom ash: State-of-the-art and recent developments(2020)
14090 Vasarevicius, S; Seniunaite, J; Vaisis, V Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash(2022)Applied Sciences-Basel, 12, 7
20853 Blasenbauer, D; Huber, F; Maehl, J; Fellner, J; Lederer, J Comparing the quantity and quality of glass, metals, and minerals present in waste incineration bottom ashes from a fluidized bed and a grate incinerator(2023)
14831 Verbinnen, B; Billen, P; Van Caneghem, J; Vandecasteele, C Recycling of MSWI Bottom Ash: A Review of Chemical Barriers, Engineering Applications and Treatment Technologies(2017)Waste And Biomass Valorization, 8, 5
27736 Reig, M; Vecino, X; Valderrama, C; Siries, I; Cortina, JL Waste-to-energy bottom ash management: Copper recovery by electrowinning(2023)
16538 Ghani, J; Toller, S; Dinelli, E; Funari, V Impact and recoverability of metals from waste: a case study on bottom ash from municipal solid waste incineration plants(2023)
25611 Elomaa, H; Seisko, S; Lehtola, J; Lundström, M A study on selective leaching of heavy metals vs. iron from fly ash(2019)Journal Of Material Cycles And Waste Management, 21, 4
15468 Abis, M; Bruno, M; Simon, FG; Grönholm, R; Hoppe, M; Kuchta, K; Fiore, S A Novel Dry Treatment for Municipal Solid Waste Incineration Bottom Ash for the Reduction of Salts and Potential Toxic Elements(2021)Materials, 14, 11
26921 Bruno, M; Abis, M; Kuchta, K; Simon, FG; Grönholm, R; Hoppe, M; Fiore, S Material flow, economic and environmental assessment of municipal solid waste incineration bottom ash recycling potential in Europe(2021)
Scroll