Knowledge Agora



Similar Articles

Title Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework
ID_Doc 23185
Authors Fanfoni, E; Sinisgalli, E; Fontana, A; Soldano, M; Garuti, M; Morelli, L
Title Microbial Characterisation of a Two-Stage Anaerobic Digestion Process for Conversion of Agri-Based Feedstock in Biogas and Long-Chain Fatty Acids in a Circular Economy Framework
Year 2024
Published Fermentation-Basel, 10, 6
Abstract In addition to energy recovery, the anaerobic digestion of agro-industrial byproducts can also produce different high-value-added compounds. Two-stage and single-stage reactors were compared for microbial communities' selection and long-chain fatty acid (LCFA) accumulation to investigate which microbial genera are most linked to the production of these compounds. The microbial communities present in the two reactors' configuration in the steady state were characterised by 16S rRNA amplicon sequencing, while LCFAs were extracted and quantified from digestate samples by gas chromatography. The results showed the differentiation of the microbially dominant families in the two setups: Defluviitaleaceae and Clostridiaceae in the acidogenic and methanogenic reactor of the two-stage reaction respectively, while Dysgonomonadaceae in the single-stage set-up. LCFA accumulation was significantly detected only in the acidogenic reactor, with palmitic (2764 mg/kg), linoleic (1795 mg/kg) and stearic (1751 mg/kg) acids as the most abundant. The dominance of Defluviitaleaceae UCG 011, along with the low abundance of the LCFA oxidiser Syntrophomonas spp. in the acidogenic reactor, could be linked to the accumulation of such compounds. Therefore, the different microbial communities shaped by the two reactors' configuration affected the accumulation of LCFAs, indicating that the two-stage anaerobic digestion of agro-industrial byproducts was more effective than single-stage digestion.
PDF https://www.mdpi.com/2311-5637/10/6/293/pdf?version=1717145345

Similar Articles

ID Score Article
7745 Khatami, K; Atasoy, M; Ludtke, M; Baresel, C; Eyice, Ö; Cetecioglu, Z Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time(2021)
14784 Atasoy, M; Cetecioglu, Z Bioaugmented Mixed Culture by Clostridium aceticum to Manipulate Volatile Fatty Acids Composition From the Fermentation of Cheese Production Wastewater(2021)
13219 Tampio, EA; Blasco, L; Vainio, MM; Kahala, MM; Rasi, SE Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes(2019)Global Change Biology Bioenergy, 11, 1
14720 Tao, Y; Ersahin, ME; Ghasimi, DSM; Ozgun, H; Wang, HY; Zhang, XD; Guo, M; Yang, YF; Stuckey, DC; van Lier, JB Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota(2020)
24490 Das, A; Das, S; Das, N; Pandey, P; Ingti, B; Panchenko, V; Bolshev, V; Kovalev, A; Pandey, P Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials(2023)Agriculture-Basel, 13, 9
13909 Zhang, WQ; Wang, SL; Yin, FB; Cao, QT; Lian, TJ; Zhang, HY; Zhu, ZP; Dong, HM Medium-chain carboxylates production from co-fermentation of swine manure and corn stalk silage via lactic acid: Without external electron donors(2022)
64523 Gazzola, G; Braguglia, CM; Crognale, S; Gallipoli, A; Mininni, G; Piemonte, V; Rossetti, S; Tonanzi, B; Gianico, A Biorefining food waste through the anaerobic conversion of endogenous lactate into caproate: A fragile balance between microbial substrate utilization and product inhibition(2022)
5284 Dahiya, S; Lingam, Y; Mohan, SV Understanding acidogenesis towards green hydrogen and volatile fatty acid production-Critical analysis and circular economy perspective(2023)
14041 Fernández-Blanco, C; Veiga, MC; Kennes, C Efficient production of n-caproate from syngas by a co-culture of Clostridium aceticum and Clostridium kluyveri(2022)
10939 Tomás-Pejó, E; González-Fernández, C; Greses, S; Kennes, C; Otero-Logilde, N; Veiga, MC; Bolzonella, D; Müller, B; Passoth, V Production of short-chain fatty acids (SCFAs) as chemicals or substrates for microbes to obtain biochemicals(2023)Biotechnology For Biofuels And Bioproducts, 16, 1
Scroll