Knowledge Agora



Similar Articles

Title Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources
ID_Doc 23188
Authors Poranek, N; Pizon, J; Lazniewska-Piekarczyk, B; Czajkowski, A; Lagashkin, R
Title Recycle Option for Municipal Solid Waste Incineration Fly Ash (MSWIFA) as a Partial Replacement for Cement in Mortars Containing Calcium Sulfoaluminate Cement (CSA) and Portland Cement to Save the Environment and Natural Resources
Year 2024
Published Materials, 17, 1
Abstract Reduction of emissions, energy consumption, and use of substitutes for natural resources is an element of sustainable development and the circular economy. Cement production is a process with a high carbon footprint; therefore, minimizing the use of this material has a significant impact on reducing environmental costs. A substitute for cement is municipal solid waste incineration fly ash (MSWIFA). The article presents a method of making an eco-concrete with the use of municipal solid waste incineration hazardous fly ash. The use of secondary waste for the production of building materials additionally contributes to achieving climate neutrality established by the European Union and China. The article analyzes the physicochemical properties of various MSWIFAs, the amount and leachability of heavy metals, and selected elements from MSWIFA and concrete properties. The technical properties of mortars containing MSWIFA were investigated. Consistency is not affected by MSWIFA content, although the workability time is prolonged. Air entraining admixture efficiency is lowered, but the effect lasts longer. The initial setting time is prolonged, and the flexural and compressive strengths are decreased in early terms because of the zinc presence in MSWIFA. MSWIFA does not influence the water demand, volume stability of mortars, or microstructure of cement's hydration products.
PDF https://www.mdpi.com/1996-1944/17/1/39/pdf?version=1703153167

Similar Articles

ID Score Article
15678 Czop, M; Lazniewska-Piekarczyk, B; Kajda-Szczesniak, M Evaluation of the Immobilization of Fly Ash from the Incineration of Municipal Waste in Cement Mortar Incorporating Nanomaterials-A Case Study(2022)Energies, 15, 23
25888 Lederer, J; Trinkel, V; Fellner, J Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria(2017)
25697 Li, JQ Municipal Solid Waste Incineration Ash-Incorporated Concrete: One Step towards Environmental Justice(2021)Buildings, 11, 11
21949 Vilarinho, IS; Guimaraes, G; Labrincha, JA; Seabra, MP Development of Eco-Mortars with the Incorporation of Municipal Solid Wastes Incineration Ash(2023)Materials, 16.0, 21
18496 Fernando, S; Gunasekara, C; Law, DW; Nasvi, MCM; Setunge, S; Dissanayake, R Life cycle assessment and cost analysis of fly ash-rice husk ash blended alkali-activated concrete(2021)
22133 Joseph, AM; Matthys, S; De Belie, N Properties of Concrete with Recycled Aggregates Giving a Second Life to Municipal Solid Waste Incineration Bottom Ash Concrete(2022)Sustainability, 14.0, 8
14086 Sargent, P; Sandanayake, M; Law, DW; Hughes, DJ; Shifa, F; Borthwick, B; Scott, P Strength, mineralogical, microstructural and CO2 emission assessment of waste mortars comprising excavated soil, scallop shells and blast furnace slag(2024)
8172 Modolo, RCE; Senff, L; Ferreira, VM; Tarelho, LAC; Moraes, CAM Fly ash from biomass combustion as replacement raw material and its influence on the mortars durability(2018)Journal Of Material Cycles And Waste Management, 20.0, 2
22180 Czop, M; Lazniewska-Piekarczyk, B Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete(2020)Materials, 13.0, 7
4587 Abinaya, TL; Balasubramanian, M A Circular Economy In Waste Management Carrying Out Experimental Evaluation Of Compressed Stabilized Earth Block Using Municipal Solid Waste Incinerator Fly Ash(2022)
Scroll