Knowledge Agora



Similar Articles

Title Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale
ID_Doc 23206
Authors Cassaro, C; Virruso, G; Culcasi, A; Cipollina, A; Tamburini, A; Micale, G
Title Electrodialysis with Bipolar Membranes for the Sustainable Production of Chemicals from Seawater Brines at Pilot Plant Scale
Year 2023
Published Acs Sustainable Chemistry & Engineering, 11, 7
Abstract Environmental concerns regarding the disposal of seawater reverse osmosis brines require the development of new valorization strategies. Electrodialysis with bipolar membrane (EDBM) technology enables the production of acid and base from a salty waste stream. In this study, an EDBM pilot plant with a membrane area of 19.2 m2 was tested. This total membrane area results much larger (i.e., more than 16 times larger) than those reported in the literature so far for the production of HCl and NaOH aqueous solutions, starting from NaCl brines. The pilot unit was tested both in continuous and discontinuous operation modes, at different current densities (200-500 A m-2). Particularly, three different process configurations were evaluated, namely, closed loop, feed and bleed, and fed-batch. At lower applied current density (200 A m-2), the closed-loop had a lower specific energy consumption (SEC) (1.4 kWh kg-1) and a higher current efficiency (CE) (80%). When the current density was increased (300-500 A m-2), the feed and bleed mode was more appropriate due to its low values of SEC (1.9-2.6 kWh kg-1) as well as high values of specific production (SP) (0.82-1.3 ton year-1 m-2) and current efficiency (63-67%). These results showed the effect of various process configurations on the performance of the EDBM, thereby guiding the selection of the most suitable process configuration when varying the operating conditions and representing a first important step toward the implementation of this technology at industrial scale.
PDF https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c06636

Similar Articles

ID Score Article
22140 Herrero-Gonzalez, M; López, J; Virruso, G; Cassaro, C; Tamburini, A; Cipollina, A; Cortina, JL; Ibañez, R; Micale, G Analysis of Operational Parameters in Acid and Base Production Using an Electrodialysis with Bipolar Membranes Pilot Plant(2023)Membranes, 13.0, 2
22488 Herrero-Gonzalez, M; Diaz-Guridi, P; Dominguez-Ramos, A; Irabien, A; Ibañez, R Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes(2020)
12506 Reig, M; Casas, S; Valderrama, C; Gibert, O; Cortina, JL Integration of monopolar and bipolar electrodialysis for valorization of seawater reverse osmosis desalination brines: Production of strong acid and base(2016)
17079 Herrero-Gonzalez, M; Ibañez, R Technical and Environmental Feasibilities of the Commercial Production of NaOH from Brine by Means of an Integrated EDBM and Evaporation Process(2022)Membranes, 12, 9
9964 Herrero-Gonzalez, M; Ibañez, R Chemical and Energy Recovery Alternatives in SWRO Desalination through Electro-Membrane Technologies(2021)Applied Sciences-Basel, 11.0, 17
14174 Tufa, RA; Noviello, Y; Di Profio, G; Macedonio, F; Ali, A; Drioli, E; Fontananova, E; Bouzek, K; Curcio, E Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination(2019)
16669 Culcasi, A; Ktori, R; Pellegrino, A; Rodriguez-Pascual, M; van Loosdrecht, MCM; Tamburini, A; Cipollina, A; Xevgenos, D; Micale, G Towards sustainable production of minerals and chemicals through seawater brine treatment using Eutectic freeze crystallization and Electrodialysis with bipolar membranes(2022)
22276 Reig, M; Valderrama, C; Gibert, O; Cortina, JL Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: Monovalent-divalent ions separation and acid and base production(2016)
7094 Thiel, GP; Kumar, A; Gómez-González, A; Lienhard, VJH Utilization of Desalination Brine for Sodium Hydroxide Production: Technologies, Engineering Principles, Recovery Limits, and Future Directions(2017)Acs Sustainable Chemistry & Engineering, 5, 12
21611 Lejarazu-Larrañaga, A; Molina, S; Ortiz, JM; Riccardelli, G; García-Calvo, E Influence of acid/base activation treatment in the performance of recycled electromembrane for fresh water production by electrodialysis(2020)
Scroll