Knowledge Agora



Similar Articles

Title Impact of bioplastic contamination on the mechanical recycling of conventional plastics
ID_Doc 23330
Authors Staplevan, MJ; Ansari, AJ; Ahmed, A; Hai, FI
Title Impact of bioplastic contamination on the mechanical recycling of conventional plastics
Year 2024
Published
Abstract Quality assurance of a recycled product is currently one of the biggest issues that the plastic recycling industry faces. The purity of the input plastic waste stream has significant influence over the quality of the recycled product. This research evaluated the impact of polylactic acid (PLA) contamination within the input waste stream of high-density polyethylene (HDPE) recycling. The ultimate tensile strength was noted to reduce by 50% when PLA contamination was at 10%. An investigation into the effect that UVA radiation (simulating solar radiation) has on HDPE contaminated with PLA was also performed to determine the long-term effect of the bioplastic contamination. After UVA treatment, the ultimate tensile strength was reported to reduce by 51% when PLA contamination was only at 2.5%. A water contact angle analysis indicated the PLA contamination increased the hydrophilic nature of the HDPE sheets, potentially creating issues if the intended use of the recycled product was to store liquids. Microscopic analysis of the HDPE sheets contaminated with PLA showed deformations, ridges, cracks, and holes appear on the surface due to the immiscibility of the two polymers that was confirmed by FTIR analysis. Colour changes were visibly noted, with UVA exposure increasing the rate of colour change. Based on the findings in this study, PLA contamination of even 1% in a HDPE waste stream would significantly reduce the quality of the recycled product.
PDF https://doi.org/10.1016/j.wasman.2024.05.028

Similar Articles

ID Score Article
16243 Alaerts, L; Augustinus, M; Van Acker, K Impact of Bio-Based Plastics on Current Recycling of Plastics(2018)Sustainability, 10, 5
7009 Khan, MR; Sadiq, MB; Vápenka, L; Volpe, S; Rajchl, A; Torrieri, E Role of quality assessment of the recycled packaging material in determining its safety profile as food contact material(2024)
25597 Bala, A; Arfelis, S; Oliver-Ortega, H; Méndez, JA Life cycle assessment of PE and PP multi film compared with PLA and PLA reinforced with nanoclays film(2022)
13746 Paiva, R; Pereira, ER; Wrona, M; Cruz, SA Optimization of Washing Parameters to Minimize the Degradation of Poly(lactic acid) Using Design of Experiments: A Contribution to the Recycling Chain(2024)Journal Of Polymers And The Environment, 32, 4
22183 de las Heras, RB; Colom, X; Canavate, J Comparative Analysis of the Effects of Incorporating Post-Industrial Recycled LLDPE and Post-Consumer PE in Films: Macrostructural and Microstructural Perspectives in the Packaging Industry(2024)Polymers, 16.0, 7
23177 Fonseca, A; Ramalho, E; Gouveia, A; Figueiredo, F; Nunes, J Life Cycle Assessment of PLA Products: A Systematic Literature Review(2023)Sustainability, 15, 16
6147 Schwarz, A; Ferjana, S; Kunst, J Life cycle assessment of advanced grade PLA product with novel end-of-life treatment through depolymerization(2023)
21899 Eriksen, MK; Christiansen, JD; Daugaard, AE; Astrup, TF Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling(2019)
26346 Eriksen, MK; Pivnenko, K; Olsson, ME; Astrup, TF Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic(2018)
22811 Sourkouni, G; Kalogirou, C; Moritz, P; Gödde, A; Pandis, PK; Hofft, O; Vouyiouka, S; Zorpas, AA; Argirusis, C Study on the influence of advanced treatment processes on the surface properties of polylactic acid for a bio-based circular economy for plastics(2021)
Scroll