Knowledge Agora



Similar Articles

Title Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors
ID_Doc 23425
Authors Jafari, M; Botte, GG
Title Sustainable Green Route for Activated Carbon Synthesis from Biomass Waste for High-Performance Supercapacitors
Year 2024
Published Acs Omega, 9, 11
Abstract Supercapacitors are high-power energy storage devices due to their charge storage capability and long cyclic stability. These devices rely on highly porous materials for electrodes providing a substantial surface area per mass, such as highly porous carbon. Developing high-performance porous carbon from biomass wastes such as waste-activated sludge and spent coffee is a sustainable way to reduce adverse environmental effects, contributing toward a carbon circular economy. In this study, hierarchically porous carbon with a high surface area of 1198 +/- 60 m(2) g(-1) was synthesized through a green route. Sodium acetate was utilized as an environmentally friendly electrolyte. The long-term stability test at a high current density was conducted, providing valuable insights into the viability of sodium acetate as a robust electrolyte in supercapacitor application. The supercapacitor demonstrated an excellent cycle stability of 98.4% after 20,000 cycles at a current density of 10 A g(-1) in sodium acetate. Further assessment revealed dominant fast surface kinetics. Moreover, a maximum energy density of 15.9 Wh kg(-1) at 0.2 A g(-1) was achieved. By utilizing highly porous carbon in conjunction with a water-based binder, a substantial improvement of 76% in capacity with respect to a nonaqueous-based binder was demonstrated.
PDF https://pubs.acs.org/doi/pdf/10.1021/acsomega.3c09438

Similar Articles

ID Score Article
10672 Krishnan, SG; Arulraj, A; Jagadish, P; Khalid, M; Nasrollahzadeh, M; Fen, R; Yang, CC; Hegde, G Pore size matters!-a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials(2023)Critical Reviews In Solid State And Materials Sciences, 48, 1
26987 Samantray, R; Manickavasakam, K; Vivekanand; Pradhan, B; Kandasamy, M; Mishra, SC; Misnon, II; Jose, R Nanoarchitectonics of low process parameter synthesized porous carbon on enhanced performance with synergistic interaction of redox-active electrolyte for supercapacitor application(2024)
8795 Mamani, A; Barreda, D; Sardella, MF; Bavio, M; Blanco, C; González, Z; Santamaría, R Fe-doped biomass-derived activated carbons as sustainable electrode materials in supercapacitors using different electrolytes(2024)
10788 Yan, B; Zheng, JJ; Feng, L; Zhang, Q; Zhang, CM; Ding, YC; Han, JQ; Jiang, SH; He, SJ Pore engineering: Structure-capacitance correlations for biomass-derived porous carbon materials(2023)
22301 Venna, S; Sharma, HB; Mandal, D; Reddy, HP; Chowdhury, S; Chandra, A; Dubey, BK Carbon material produced by hydrothermal carbonisation of food waste as an electrode material for supercapacitor application: A circular economy approach(2022)Waste Management & Research, 40.0, 10
14790 Mohamed, MM; Shah, SS; Hakeem, AS; Javid, M; Aziz, MA; Yamani, ZH A Comprehensive Evaluation of Biomass-Derived Activated Carbon Materials for Electrochemical Applications in Zinc-Ion Hybrid Supercapacitors(2024)Acs Applied Energy Materials, 7, 17
29878 Adan-Mas, A; Alcaraz, L; Arévalo-Cid, P; López-Gómez, FA; Montemor, F Coffee-derived activated carbon from second biowaste for supercapacitor applications(2021)
8583 Chodankar, NR; Patil, SJ; Hwang, SK; Shinde, PA; Karekar, SV; Raju, GSR; Ranjith, KS; Olabi, AG; Dubal, DP; Huh, YS; Han, YK Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste(2022)
21034 Khedulkar, AP; Pandit, B; Dang, VD; Doong, RA Agricultural waste to real worth biochar as a sustainable material for supercapacitor(2023)
29815 Lin, YR; Hwang, YK; Chan, KK; Wu, CL; Chen, JZ; Chang, FC Lignosulfonate-derived porous carbon via self-activation for supercapacitor electrodes(2024)
Scroll