Knowledge Agora



Similar Articles

Title Investigating Aging and Rejuvenation Mechanism of Biomodified Rubberized Bitumen
ID_Doc 23477
Authors Kabir, SF; Fini, EH
Title Investigating Aging and Rejuvenation Mechanism of Biomodified Rubberized Bitumen
Year 2021
Published Journal Of Materials In Civil Engineering, 33, 7
Abstract This study examines the effects of five biomodifiers on the aging and rejuvenation of biomodified rubberized bitumen. It further discusses the challenges associated with restoration and reuse of aged bitumen, especially bitumen located in a geographic area with high ultraviolet intensity. Exposing bitumen to oxidation changes its colloidal stability, whereas the content of asphaltene increases, and the content of aromatics decreases as aging progresses. In addition, bitumen's evolution during aging includes oxidation, aromatization, chain scission, and carbonization, which alters bitumen's molecular structure and subsequently its restoration capacity. To revitalize aged bitumen, a need exists to restore bitumen's molecular conformation. The latter becomes more complex when rubber molecules are involved because the presence of polymeric structures and carbon black in tires could have counteracting effects on bitumen's aging. The polymer structure can degrade and act as a sacrificing agent, whereas carbon black might work as an ultraviolet blocker and free radical scavenger. In addition, the presence of other modifiers, such as bio-oils, could alter the evolution of aging. To study the interplay of modifiers on the aging evolution of rubberized bitumen, this study compares the resistance to the ultraviolet aging of various biomodified rubberized bitumens. It further examines the efficacy of a rejuvenator to restore each aged bitumen. This study found that not all biomodified rubberized bitumens had similar restoration capacity. The results indicated that bitumen containing a wood-based modifier has the least signs of aging among all scenarios studied. This finding can be attributed to the presence of a significant content of furfural in the wood-based modifier that helped reduce molecular-level changes. After aging, each specimen was rejuvenated using a biobased rejuvenator. The success of rejuvenation was tracked using the rejuvenating index calculated based on the extent of the changes in the chemical and rheological properties of rejuvenated bitumen. Aged wood-based rubber modifier was found to need the lowest dosage (5.7%) of the rejuvenator to be restored, followed by corn stover (8.3%), miscanthus (8.4%), waste vegetable oil (9.81%), and castor oil-based rubber modifier (10.87%). The study results indicate that the composition of biomodified rubberized bitumen not only affects its evolution during aging but also its rejuvenation capacity.
PDF

Similar Articles

ID Score Article
23554 Rajib, A; Saadeh, S; Katawal, P; Mobasher, B; Fini, EH Enhancing Biomass Value Chain by Utilizing Biochar as A Free Radical Scavenger to Delay Ultraviolet Aging of Bituminous Composites Used in Outdoor Construction(2021)
10916 Rodríguez-Alloza, AM; Autelitano, F; Giuliani, F Restoration of physical properties on an aged crumb rubber modified bitumen adding a bio-based recycling agent(2023)
22914 Ingrassia, LP; Lu, XH; Ferrotti, G; Canestrari, F Chemical and rheological investigation on the short- and long-term aging properties of bio-binders for road pavements(2019)
15471 Abe, AA; Caputo, P; Eskandarsefat, S; Loise, V; Porto, M; Giorno, E; Venturini, L; Rossi, CO Rejuvenating Agents vs. Fluxing Agents: Their Respective Mechanisms of Action on Bitumen Subjected to Multiple Aging Cycles(2023)Applied Sciences-Basel, 13, 2
15208 Rajib, AI; Samieadel, A; Zalghout, A; Kaloush, KE; Sharma, BK; Fini, EH Do all rejuvenators improve asphalt performance?(2022)Road Materials And Pavement Design, 23, 2
13552 Ding, Z; Jiang, XM; Li, HF; Li, PL; Chen, JR Influences of Waste-Utilizing Rejuvenator on Properties of Recycled Asphalt Binders(2023)Journal Of Materials In Civil Engineering, 35, 1
29652 Tarsi, G; Caputo, P; Porto, M; Sangiorgi, C A Study of Rubber-REOB Extender to Produce Sustainable Modified Bitumens(2020)Applied Sciences-Basel, 10.0, 4
12735 Rajib, A; Fini, EH Inherently Functionalized Carbon from Lipid and Protein-Rich Biomass to Reduce Ultraviolet-Induced Damages in Bituminous Materials(2020)Acs Omega, 5.0, 39
21233 Ingrassia, LP; Lu, XH; Ferrotti, G; Conti, C; Canestrari, F Investigating the "circular propensity" of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential(2020)
12969 Penki, R; Rout, SK Next-generation bitumen: a review on challenges and recent developments in bio-bitumen preparation and usage(2023)Biomass Conversion And Biorefinery, 13.0, 11
Scroll