Knowledge Agora



Similar Articles

Title Electrochemical codeposition of copper-antimony and interactions with electrolyte additives: Towards the use of electronic waste for sustainable copper electrometallurgy
ID_Doc 23564
Authors Verbruggen, F; Prevoteau, A; Bonin, L; Marcoen, K; Hauffman, T; Hennebel, T; Rabaey, K; Moats, MS
Title Electrochemical codeposition of copper-antimony and interactions with electrolyte additives: Towards the use of electronic waste for sustainable copper electrometallurgy
Year 2022
Published
Abstract The use of electronic waste or low grade materials as feedstock for the electrolytic production of copper is challenging because impurity metals such as Sb(III) are introduced in the electrolyte. In this work, the mechanisms that lead to antimony contamination in electrolytic copper are studied. Linear sweep voltammetry experiments indicate that the reduction of Sb(III) is kinetically slow in the absence of Cu(II). In the presence of Cu (II), however, reduction of Sb(III) can occur readily by the codeposition of Cu(II) and Sb(III) as demonstrated by chronoamperometry. The ToF-SIMS analyses confirmed the codeposition of antimony in the very first micrometer of the copper deposit, enabled by the nucleation overpotential for galvanostatic copper electrodeposition under conditions relevant for the commercial production of copper. Based on potentiostatic electrodeposition experiments, we suggest that a copper concentration of >40 g L-1 Cu(II) in Sb(III) containing electrolytes is beneficial to obtain high purity copper. Codeposition reactions were impacted by the presence of additives (thiourea, glue and chloride ions). In particular, the addition of 0.02 g L-1 chloride mitigated the codeposition of antimony (0.02 g L-1 Sb(III)) to produce grade A copper. For optimal removal of Sb(III) from bleed electrolytes, a molar ratio of ~3 Cu(II)/Sb(III) should be maintained (e.g. 0.3 g L-1 Cu(II) for a typical concentration of 0.2 g L-1 Sb(III)).
PDF

Similar Articles

ID Score Article
23270 Verbruggen, F; Ostermeyer, P; Bonin, L; Prévoteau, A; Marcoen, K; Hauffman, T; Hennebel, T; Rabaey, K; Moats, MS Electrochemical codeposition of arsenic from acidic copper sulfate baths: The implications for sustainable copper electrometallurgy(2022)
10195 Wang, DS; Liang, YM; Zeng, Y; Liu, C; Zhan, C; Chen, P; Song, SX; Jia, FF Highly selective recovery of gold and silver from E-waste via stepwise electrodeposition directly from the pregnant leaching solution enabled by the MoS2 cathode(2024)
Scroll