Knowledge Agora



Similar Articles

Title Recovery of phosphate and ammonia from wastewater via struvite precipitation using spent refractory brick gravel from steel industry
ID_Doc 23587
Authors Li, DY; Cho, YC; Hsu, MH; Lin, YP
Title Recovery of phosphate and ammonia from wastewater via struvite precipitation using spent refractory brick gravel from steel industry
Year 2022
Published
Abstract Spent refractory brick (SRB) generated from the steel industry has a high magnesium content. In this study, a procedure was developed to utilize SRB gravels for efficient recovery of phosphate and ammonia from high strength wastewater via struvite (MgNH4PO4 center dot 6H2O(s)) precipitation. Mg2+ and Ca2+ were first leached from SRB gravels using nitric acid solution. Ca2+ in the solution could inhibit struvite precipitation and was sequestered by dosing SO32xe213; to form calcium sulfite (CaSO3(s)). The resulting Mg2+-rich solution was then employed to initiate struvite precipitation for phosphate and ammonia recovery. The optimal precipitation was achieved with a molar ratio of [Mg2+]:[NH3-N]:[PO43-P] = 2:1:2 at pH 9.5. The residual phosphate in the solution can be further removed via the precipitation of calcium phosphate minerals. Overall, 99.6% phosphate and 98.2% ammonia could be recovered and the treated wastewater could meet the discharging standards of ammonia and phosphate. The resulting solids, including calcium sulfite, struvite and calcium phosphate can be potentially used in the cement industry and agriculture sector to achieve sustainable recycle of spent materials.
PDF

Similar Articles

ID Score Article
25240 Pesonen, J; Janssens, F; Hu, T; Lassi, U; Tuomikoski, S Precipitation of struvite using MgSO4 solution prepared from sidestream dolomite or fly ash(2022)Heliyon, 8, 12
21409 Vasa, TN; Chacko, SP Recovery of struvite from wastewaters as an eco-friendly fertilizer: Review of the art and perspective for a sustainable agriculture practice in India(2021)
13930 Rodrigues, DM; Fragoso, RD; Carvalho, AP; Hein, T; de Brito, AG Are alternative magnesium sources the key for a viable downstream transfer of struvite precipitation? Assessment of process feasibility and precipitate characteristics(2022)
13565 Shaddel, S; Grini, T; Andreassen, JP; Osterhus, SW; Ucar, S Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization(2020)
7884 Tuomikoski, S; Sauvola, E; Riponiemi, M; Lassi, U; Pesonen, J Usage of phosphoric acid plant's circulate pond waters in struvite precipitation-Effect of conditions(2023)Water And Environment Journal, 37, 3
8821 Ha, TH; Mahasti, NNN; Ha, HQ; Liao, PL; Huang, YH; Lu, MC Recovery of nitrogen as struvite from swine wastewater: Comparison study of batch and continuous fluidized-bed crystallization process(2024)
9267 Bastrzyk, A; Pacyna-Iwanicka, K; Dawiec-Lisniewska, A; Czuba, K; Janiak, K; Chrobot, P; Okoro, OV; Shavandi, A; Podstawczyk, D Management of secondary effluent using novel membrane technology to recover water and magnesium ions for phosphate precipitation: An integrated pilot-scale study(2024)
14457 Maggetti, C; Pinelli, D; Di Federico, V; Sisti, L; Tabanelli, T; Cavani, F; Frascari, D Development and validation of an adsorption process for phosphate removal and recovery from municipal wastewater based on hydrotalcite-related materials(2024)
2697 Achilleos, P; Roberts, KR; Williams, ID Struvite precipitation within wastewater treatment: A problem or a circular economy opportunity?(2022)Heliyon, 8, 7
23764 Otieno, B; Funani, CK; Khune, SM; Kabuba, J; Osifo, P Struvite recovery from anaerobically digested waste-activated sludge: A short review(2023)Journal Of Materials Research, 38, 16
Scroll