Knowledge Agora



Similar Articles

Title Optimization of Disassembly Strategies for Electric Vehicle Batteries
ID_Doc 23720
Authors Baazouzi, S; Rist, FP; Weeber, M; Birke, KP
Title Optimization of Disassembly Strategies for Electric Vehicle Batteries
Year 2021
Published Batteries-Basel, 7, 4
Abstract Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs.
PDF https://www.mdpi.com/2313-0105/7/4/74/pdf?version=1637803565

Similar Articles

ID Score Article
27885 Glöser-Chahoud, S; Huster, S; Rosenberg, S; Baazouzi, S; Kiemel, S; Singh, S; Schneider, C; Weeber, M; Miehe, R; Schultmann, F Industrial disassembling as a key enabler of circular economy solutions for obsolete electric vehicle battery systems(2021)
7562 Baazouzi, S; Grimm, J; Birke, KP Multi-Method Model for the Investigation of Disassembly Scenarios for Electric Vehicle Batteries(2023)Batteries-Basel, 9, 12
18577 Rosenberg, S; Huster, S; Baazouzi, S; Glöser-Chahoud, S; Al Assadi, A; Schultmann, F Field Study and Multimethod Analysis of an EV Battery System Disassembly(2022)Energies, 15.0, 15
21512 Lander, L; Tagnon, C; Nguyen-Tien, V; Kendrick, E; Elliott, RJR; Abbott, AP; Edge, JS; Offer, GJ Breaking it down: A techno-economic assessment of the impact of battery pack design on disassembly costs(2023)
26430 Yang, SB; Zhuo, XJ; Ning, W; Xia, X; Huang, Y Integrated Risk-Aware Smart Disassembly Planning for Scrap Electric Vehicle Batteries(2024)Energies, 17, 12
12701 Meng, K; Xu, GY; Peng, XH; Youcef-Toumi, K; Li, J Intelligent disassembly of electric-vehicle batteries: a forward-looking overview(2022)
Scroll