Knowledge Agora



Similar Articles

Title The Recycling of Lithium-Ion Batteries LiCoO2 Cathode: Balancing Sustainability and Efficiency
ID_Doc 23736
Authors Carena, E; Morina, R; Brugnetti, G; Pianta, N; Binetti, SO; Ferrara, C
Title The Recycling of Lithium-Ion Batteries LiCoO2 Cathode: Balancing Sustainability and Efficiency
Year 2024
Published Journal Of Chemical Education, 101, 5
Abstract We are all users of lithium-ion batteries (LIBs), the electrochemical energy storage devices that revolutionized our life, making the diffusion of portable and wearable devices possible and now driving the switch from a combustion engine to electric vehicles in the transportation sector. These positive trends are however leading to two whiplash effects: the issue related to management of LIBs when they reach the end of their life (EoL-LIBs) and the supply of the critical raw materials (CRMs) needed to produce the essential LIBs' components. Recycling of EoL-LIBs is the answer to these two problems, addressing the aspects of waste management while providing a secondary source of CRMs needed to produce new LIBs, in a closed-loop circular economy scheme. The proposed laboratory activity is specifically focused on the recycling of LiCoO2, the most diffused cathode material and also the one containing the highest amount of CRMs. The students will be called to analyze the degradation procedure through acidic leaching, comparing the method today mostly exploited at industrial level (using inorganic acid) and the method recently proposed in the scientific literature (exploiting organic acids). Students will be called to consider not only quantitative chemical indicators (yields of degradation and recovery of CRMs) but also the cost, safety, and disposal of the procedure. The aim of this experience is to drive the students to critically consider all aspects related to sustainability, to present them the tools to quantitatively assess it, and to create awareness regarding a technology involved in our everyday life.
PDF

Similar Articles

ID Score Article
32830 Marchese, D; Giosuè, C; Staffolani, A; Conti, M; Orcioni, S; Soavi, F; Cavalletti, M; Stipa, P An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries(2024)Batteries-Basel, 10, 1
28821 Ferrara, C; Ruffo, R; Quartarone, E; Mustarelli, P Circular Economy and the Fate of Lithium Batteries: Second Life and Recycling(2021)Advanced Energy And Sustainability Research, 2.0, 10
9714 Piatek, J; Afyon, S; Budnyak, TM; Budnyk, S; Sipponen, MH; Slabon, A Sustainable Li-Ion Batteries: Chemistry and Recycling(2021)Advanced Energy Materials, 11.0, 43
22876 Iturrondobeitia, M; Vallejo, C; Berroci, M; Akizu-Gardoki, O; Minguez, R; Lizundia, E Environmental Impact Assessment of LiNi1/3M1/3C1/3O2 Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries(2022)Acs Sustainable Chemistry & Engineering, 10.0, 30
3026 Velázquez-Martínez, O; Valio, J; Santasalo-Aarnio, A; Reuter, M; Serna-Guerrero, R A Critical Review of Lithium-Ion Battery Recycling Processes from a Circular Economy Perspective(2019)Batteries-Basel, 5, 4
9495 Biswal, BK; Zhang, B; Tran, PTM; Zhang, JJ; Balasubramanian, R Recycling of spent lithium-ion batteries for a sustainable future: recent advancements(2024)Chemical Society Reviews, 53.0, 11
8976 Zanoletti, A; Carena, E; Ferrara, C; Bontempi, E; Burheim, OS A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues(2024)Batteries-Basel, 10.0, 1
229 Harper, GDJ; Kendrick, E; Anderson, PA; Mrozik, W; Christensen, P; Lambert, S; Greenwood, D; Das, PK; Ahmeid, M; Milojevic, Z; Du, WJ; Brett, DJL; Shearing, PR; Rastegarpanah, A; Stolkin, R; Sommerville, R; Zorin, A; Durham, JL; Abbott, AP; Thompson, D; Browning, ND; Mehdi, BL; Bahri, M; Schanider-Tontini, F; Nicholls, D; Stallmeister, C; Friedrich, B; Sommerfeld, M; Driscoll, LL; Jarvis, A; Giles, EC; Slater, PR; Echavarri-Bravo, V; Maddalena, G; Horsfall, LE; Gaines, L; Dai, Q; Jethwa, SJ; Lipson, AL; Leeke, GA; Cowell, T; Farthing, JG; Mariani, G; Smith, A; Iqbal, Z; Golmohammadzadeh, R; Sweeney, L; Goodship, V; Li, Z; Edge, J; Lander, L; Nguyen, VT; Elliot, RJR; Heidrich, O; Slattery, M; Reed, D; Ahuja, J; Cavoski, A; Lee, RB; Driscoll, E; Baker, J; Littlewood, P; Styles, I; Mahanty, S; Boons, F Roadmap for a sustainable circular economy in lithium-ion and future battery technologies(2023)Journal Of Physics-Energy, 5, 2
6165 Hantanasirisakul, K; Sawangphruk, M Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives(2023)Global Challenges, 7, 4
3956 Sheth, RP; Ranawat, NS; Chakraborty, A; Mishra, RP; Khandelwal, M The Lithium-Ion Battery Recycling Process from a Circular Economy Perspective-A Review and Future Directions(2023)Energies, 16, 7
Scroll