Knowledge Agora



Similar Articles

Title Start-up of a microalgae-based treatment system within the biorefinery concept: from wastewater to bioproducts
ID_Doc 23757
Authors Uggetti, E; García, J; Alvarez, JA; García-Galán, MJG
Title Start-up of a microalgae-based treatment system within the biorefinery concept: from wastewater to bioproducts
Year 2018
Published Water Science And Technology, 78, 1
Abstract Within the European project INCOVER, an experimental microalgae-based treatment system has been built for wastewater reuse and added-value products generation. This article describes this new experimental plant and the start-up stage, starting from the new design of three semi-closed horizontal photobioreactors with low energy requirements for microalgae cultivation (30 m(3) total), using agricultural runoff and urban wastewater as feedstock. The inflow nutrients concentration is adjusted to select cyanobacteria, microalgae able to accumulate polyhydroxybutyrates, which can be used for bioplastics production. Part of the harvested biomass is used as substrate for anaerobic co-digestion (AcoD) with secondary sludge to obtain biogas. This biogas is then cleaned in an absorption column to reach methane concentration up to 99%. The digestate from the AcoD is further processed in sludge wetlands for stabilization and biofertilizer production. On the other hand, treated water undergoes ultrafiltration and disinfection through a solar-driven process, then it is pumped through absorption materials to recover nutrients, and eventually applied in an agricultural field to grow energy crops by means of a smart irrigation system. This plant presents a sustainable approach for wastewater management, which can be seen as a resource recovery process more than a waste treatment.
PDF https://iwaponline.com/wst/article-pdf/78/1/114/475398/wst078010114.pdf

Similar Articles

ID Score Article
13081 Magalhaes, IB; Ferreira, J; Castro, JD; Assis, LRD; Calijuri, ML Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems(2022)
27776 Dhanker, R; Khatana, K; Verma, K; Singh, A; Heena; Kumar, R; Mohamed, HI An integrated approach of algae-bacteria mediated treatment of industries generated wastewater: Optimal recycling of water and safe way of resource recovery(2023)
24747 Sarma, S; Sharma, S; Rudakiya, D; Upadhyay, J; Rathod, V; Patel, A; Narra, M Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery(2021)3 Biotech, 11, 8
24129 Morillas-España, A; Lafarga, T; Acién-Fernández, FG; Gómez-Serrano, C; González-López, CV Annual production of microalgae in wastewater using pilot-scale thin-layer cascade photobioreactors(2021)Journal Of Applied Phycology, 33, 6
23918 Goswami, RK; Mehariya, S; Verma, P; Lavecchia, R; Zuorro, A Microalgae-based biorefineries for sustainable resource recovery from wastewater(2021)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
18730 Geremia, E; Ripa, M; Catone, CM; Ulgiati, S A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production-A New Challenge for Europe(2021)Environments, 8.0, 12
3501 Vaz, SA; Badenes, SM; Pinheiro, HM; Martins, RC Recent reports on domestic wastewater treatment using microalgae cultivation: Towards a circular economy(2023)
29664 González-Camejo, J; Ferrer, J; Seco, A; Barat, R Outdoor microalgae-based urban wastewater treatment: Recent advances, applications, and future perspectives(2021)Wiley Interdisciplinary Reviews-Water, 8.0, 3
9882 dos Santos, AM; Deprá, MC; dos Santos, AM; Cichoski, AJ; Zepka, LQ; Jacob-Lopes, E Sustainability metrics on microalgae-based wastewater treatment system(2020)
Scroll