Knowledge Agora



Similar Articles

Title Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications
ID_Doc 23768
Authors Osorio-Reyes, JG; Valenzuela-Amaro, HM; Pizaña-Aranda, JJP; Ramírez-Gamboa, D; Meléndez-Sánchez, ER; López-Arellanes, ME; Castañeda-Antonio, MD; Coronado-Apodaca, KG; Araújo, RG; Sosa-Hernández, JE; Melchor-Martínez, EM; Iqbal, HMN; Parra-Saldivar, R; Martínez-Ruiz, M
Title Microalgae-Based Biotechnology as Alternative Biofertilizers for Soil Enhancement and Carbon Footprint Reduction: Advantages and Implications
Year 2023
Published Marine Drugs, 21, 2
Abstract Due to the constant growth of the human population and anthropological activity, it has become necessary to use sustainable and affordable technologies that satisfy the current and future demand for agricultural products. Since the nutrients available to plants in the soil are limited and the need to increase the yields of the crops is desirable, the use of chemical (inorganic or NPK) fertilizers has been widespread over the last decades, causing a nutrient shortage due to their misuse and exploitation, and because of the uncontrolled use of these products, there has been a latent environmental and health problem globally. For this reason, green biotechnology based on the use of microalgae biomass is proposed as a sustainable alternative for development and use as soil improvers for crop cultivation and phytoremediation. This review explores the long-term risks of using chemical fertilizers for both human health (cancer and hypoxia) and the environment (eutrophication and erosion), as well as the potential of microalgae biomass to substitute current fertilizer using different treatments on the biomass and their application methods for the implementation on the soil; additionally, the biomass can be a source of carbon mitigation and wastewater treatment in agro-industrial processes.
PDF https://www.mdpi.com/1660-3397/21/2/93/pdf?version=1674897321

Similar Articles

ID Score Article
25543 Castro, IMP; Rosa, A; Borges, A; Cunha, F; Passos, F The effects of microalgae use as a biofertilizer on soil and plant before and after its anaerobic (co-)digestion with food waste(2024)
14422 Alvarez-González, A; Uggetti, E; Serrano, L; Gorchs, G; Ferrer, I; Díez-Montero, R Can microalgae grown in wastewater reduce the use of inorganic fertilizers?(2022)
27950 Parmar, P; Kumar, R; Neha, Y; Srivatsan, V Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions(2023)
18730 Geremia, E; Ripa, M; Catone, CM; Ulgiati, S A Review about Microalgae Wastewater Treatment for Bioremediation and Biomass Production-A New Challenge for Europe(2021)Environments, 8.0, 12
20295 Hoang, AT; Sirohi, R; Pandey, A; Nizetic, S; Lam, SS; Chen, WH; Luque, R; Thomas, S; Arici, M; Pham, VV Biofuel production from microalgae: challenges and chances(2023)Phytochemistry Reviews, 22, 4
3749 Kholssi, R; Ramos, PV; Marks, EAN; Montero, O; Rad, C 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy(2021)
9822 Victor, MM; Moutinho, FLB; Riatto, VB Microalgae: A Sustainable Strategy In The Transformation And Obtaining Of Organic Compounds.(2024)Quimica Nova, 47.0, 2
23918 Goswami, RK; Mehariya, S; Verma, P; Lavecchia, R; Zuorro, A Microalgae-based biorefineries for sustainable resource recovery from wastewater(2021)
10004 Goswami, RK; Agrawal, K; Verma, P Multifaceted Role of Microalgae for Municipal Wastewater Treatment: A Futuristic Outlook toward Wastewater Management(2022)
25272 Nishshanka, GKSH; Thevarajah, B; Nimarshana, PHV; Prajapati, SK; Ariyadasa, TU Real-time integration of microalgae-based bioremediation in conventional wastewater treatment plants: Current status and prospects(2023)
Scroll