Knowledge Agora



Similar Articles

Title Enhancing CO2 Mineralization Rate and Extent of Iron and Steel Slag via Grinding
ID_Doc 23770
Authors Myers, C; Sasagawa, J; Nakagaki, T
Title Enhancing CO2 Mineralization Rate and Extent of Iron and Steel Slag via Grinding
Year 2022
Published Isij International, 62, 12
Abstract Roughly 10% of the CO2 emissions from iron and steel making are attributable to the direct release of CO2 from the thermal decomposition of carbonates to produce flux, mainly CaO, used for impurity removal. Notably, these direct emissions remain even if carbon-based steelmaking is replaced by hydrogen-based steelmaking. After removing impurities from the molten metal, this flux becomes the solid waste product called `slag', a primarily Ca-silicate material. The transformation of slag back into carbonates is thermodynamically spontaneous with negative.G in the ambient environment, meaning that similar to 10% of the CO2 emissions from iron and steel making could be negated if equipment and methods were developed to support CO2 mineralization. However, the rate of CO2 mineralization using slag is slowed by several environmental, geometric, and processing factors. We leverage an experimentally verified model of CO2 mineralization to determine how to efficiently accelerate the process. Increasing the crystallinity of slag, increasing the relative humidity, and reducing the grain size of slag particles provide the greatest increase in CO2 mineralization rate at the lowest energy penalty. Increasing the concentration of CO2 and the temperature provide only modest increases in the CO2 mineralization rate while incurring a substantial energy penalty. For steelmaking slags, CO2 mineralization represents low-hanging fruit as the current reuse pathways are low value. For ironmaking slag, replacing the production of amorphous slag for the cement industry with the production of crystalline slag for CO2 mineralization becomes financially preferable when a carbon price/tax exceeds 67.40 USD/t-CO2.
PDF

Similar Articles

ID Score Article
27040 Moon, S; Kim, E; Noh, S; Triwigati, PT; Choi, S; Park, Y Carbon mineralization of steel and iron-making slag: Paving the way for a sustainable and carbon-neutral future(2024)Journal Of Environmental Chemical Engineering, 12, 2
22589 Capelo-Avilés, S; de Oliveira, RT; Stampino, IIG; Gispert-Guirado, F; Casals-Terré, A; Giancola, S; Galán-Mascarós, JR A thorough assessment of mineral carbonation of steel slag and refractory waste(2024)
29558 Pan, SY; Chung, TC; Ho, CC; Hou, CJ; Chen, YH; Chiang, PC CO2 Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain(2017)
9655 Zhang, YY; Yu, LH; Cui, KK; Wang, H; Fu, T Carbon capture and storage technology by steel-making slags: Recent progress and future challenges(2023)
10266 Morone, M; Costa, G; Georgakopoulos, E; Manovic, V; Stendardo, S; Baciocchi, R Granulation-Carbonation Treatment of Alkali Activated Steel Slag for Secondary Aggregates Production(2017)Waste And Biomass Valorization, 8, 5
28053 Chandel, SS; Singh, PK; Katiyar, PK; Randhawa, NS A Review on Environmental Concerns and Technological Innovations for the Valorization of Steel Industry Slag(2023)
5570 Krammer, AC; Doschek-Held, K; Steindl, FR; Weisser, K; Gatschlhofer, C; Juhart, J; Wohlmuth, D; Sorger, C Valorisation of metallurgical residues via carbothermal reduction: A circular economy approach in the cement and iron and steel industry(2024)
6869 Meng, JL; Liao, WJ; Zhang, GQ Emerging CO2-Mineralization Technologies for Co-Utilization of Industrial Solid Waste and Carbon Resources in China(2021)Minerals, 11, 3
8737 Biava, G; Zacco, A; Zanoletti, A; Sorrentino, GP; Capone, C; Princigallo, A; Depero, LE; Bontempi, E Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo-Brescia Area(2023)Materials, 16.0, 11
8875 Di Maria, A; Snellings, R; Alaerts, L; Quaghebeur, M; Van Acker, K Environmental assessment of CO2 mineralisation for sustainable construction materials(2020)
Scroll