Knowledge Agora



Similar Articles

Title Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus
ID_Doc 23873
Authors Ghavami, N; Özdenkçi, K; Chianese, S; Musmarra, D; De Blasio, C
Title Process simulation of hydrothermal carbonization of digestate from energetic perspectives in Aspen Plus
Year 2022
Published
Abstract Digestate, a nutrient-rich substance, is a potential resource of income in biogas plants. It can be utilized as a soil amendment and solid biofuel due to containing inorganic and organic compounds. However, concerning the environmental regulations, there is a requirement for further processes, including hydrothermal carbonization (HTC). Regarding the selection of optimum conditions from the experimental data, this study proposes the en-ergetic yield as the performance indicator from the techno-economic viewpoint, taking solid load and relative equipment size comparison into account as well as the heating value of hydrochar. The energetic yield is the energy content in hydrochar as the heating value per unit mass of reactor inlet, MJ/kg reactor inlet. Among the investigated data for various digestates, the optimum feedstock and conditions were HTC agricultural residue (with 5.02 Energetic yield MJ/kg reactor inlet) at 200 degrees C and the residence time of 1 h with 30 % solid load based on the energetic yields, i.e. selected for process simulation. This study also investigates required experimental data for enabling mass balance and simulation models. In addition to yield and proximate analysis of feedstock and hydrochar, the characterization of process water is important for representing the dissolved organics. The available data influences the accuracy and closure of elemental mass balances for process simulation. In addition, this study also investigates simulation aspects for producing hydrochar with 20 % moisture content as well: the impact of property method on energy balance, the heat of reaction compared to the literature values, and heat integration concepts. SRK, PSRK, NRTL, and IDEAL methods reported the same value,-122 kW, as the heat duty of the reactor. This value corresponds to-1.46 MJ/kg dry solid and-1.74 MJ/kg dry-ash-free solid inlet as the heat of reaction.
PDF https://doi.org/10.1016/j.enconman.2022.116215

Similar Articles

ID Score Article
12423 Sarrion, A; Medina-Martos, E; Iribarren, D; Diaz, E; Mohedano, AF; Dufour, J Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste(2023)
18647 Raheem, A; He, Q; Ding, L; Dastyar, W; Yu, GS Evaluating performance of pyrolysis and gasification processes of agriculture residues-derived hydrochar: Effect of hydrothermal carbonization(2022)
6081 Sharma, HB; Panigrahi, S; Sarmah, AK; Dubey, BK Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept(2020)
24057 Vallejo, F; Díaz-Robles, LA; González, P; Poblete, J Energy Efficiency Evaluation Of A Continuous Treatment Of Agroforestry Waste Biomass By Hydrothermal Carbonization(2021)
3938 Sharma, HB; Panigrahi, S; Dubey, BK Food waste hydrothermal carbonization: Study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy(2021)
10743 Mahata, S; Periyavaram, SR; Akkupalli, NK; Srivastava, S; Matli, C A review on Co-Hydrothermal carbonization of sludge: Effect of process parameters, reaction pathway, and pollutant transport(2023)
15004 Sousa, S; Duarte, E; Mesquita, M; Saraiva, S Energetic Valorization of Cereal and Exhausted Coffee Wastes Through Anaerobic Co-digestion With Pig Slurry(2021)
9156 Rasaq, WA; Thiruchenthooran, V; Wirkijowska, K; Valentin, M; Bobak, L; Igwegbe, CA; Bialowiec, A Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products(2024)
9182 Jamal-Uddin, AT; Salaudeen, SA; Dutta, A; Zytner, RG Hydrothermal Conversion of Waste Biomass from Greenhouses into Hydrochar for Energy, Soil Amendment, and Wastewater Treatment Applications(2022)Energies, 15.0, 10
23070 Pulka, J; Manczarski, P; Stepien, P; Styczynska, M; Koziel, JA; Bialowiec, A Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer?(2020)Materials, 13, 4
Scroll