Knowledge Agora



Similar Articles

Title Embodied Carbon Benefits of Reusing Structural Components in the Built Environment: A Medium-rise Office Building Case Study
ID_Doc 24075
Authors De Wolf, C; Brutting, J; Fivet, C
Title Embodied Carbon Benefits of Reusing Structural Components in the Built Environment: A Medium-rise Office Building Case Study
Year 2018
Published
Abstract This paper provides parametric estimates of embodied carbon reductions when structural components are reused in a typical office building. First, a lower bound of structural material quantities is estimated for a typical steel frame structure in a low-rise office building. The embodied carbon of this conventional design is then compared with values collected from a series of similar existing steel buildings (deQo database) as benchmark. Various scenarios regarding the impact of selective deconstruction, transportation, and cross-section oversizing are modelled and parameterized. The study eventually computes carbon savings over one life cycle of the building project. Results show that reuse remains beneficial for long transport and high oversizing. The discussion calls for more comprehensive studies and refined metrics for quantifying selective deconstruction.
PDF

Similar Articles

ID Score Article
26529 Bertin, I; Saadé, M; Le Roy, R; Jaeger, JM; Feraille, A Environmental impacts of Design for Reuse practices in the building sector(2022)
28478 Pristerà, G; Tonini, D; Tornaghi, ML; Caro, D; Sala, S Taxonomy of design for deconstruction options to enable circular economy in buildings(2024)
11018 Morales-Beltran, M; Engür, P; Sisman, OA; Aykar, GN Redesigning for Disassembly and Carbon Footprint Reduction: Shifting from Reinforced Concrete to Hybrid Timber-Steel Multi-Story Building(2023)Sustainability, 15, 9
17472 Crowther, P Re-Valuing Construction Materials and Components Through Design for Disassembly(2018)
16571 De Wolf, C; Hoxha, E; Fivet, C Comparison of environmental assessment methods when reusing building components: A case study(2020)
21709 Pronk, A; Brancart, S; Sanders, F Reusing Timber Formwork in Building Construction: Testing, Redesign, and Socio-Economic Reflection(2022)Urban Planning, 7.0, 2
64263 Bragança, L; Muniesa, MCV Measuring Carbon in Cities and Their Buildings through Reverse Engineering of Life Cycle Assessment(2023)Applied System Innovation, 6, 5
27202 Zhu, H; Liou, SR; Chen, PC; He, XY; Sui, ML Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials(2024)Sustainability, 16.0, 5
69668 Forsythe, P; Wilkinson, SJ Measuring office fit-out changes to determine recurring embodied energy in building life cycle assessment(2015)Facilities, 33.0, 3-4
5305 Minunno, R; O'Grady, T; Morrison, GM; Gruner, RL Exploring environmental benefits of reuse and recycle practices: A circular economy case study of a modular building(2020)
Scroll